前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Pandas 2.1发布了

Pandas 2.1发布了

作者头像
deephub
发布2023-09-14 14:30:22
2290
发布2023-09-14 14:30:22
举报
文章被收录于专栏:DeepHub IMBA

2023年3月1日,Pandas 发布了2.0版本。6个月后(8月30日),更新了新的2.1版。让我们看看他有什么重要的更新。

更好的PyArrow支持

PyArrow是在Panda 2.0中新加入的后端,对于大数据来说提供了优于NumPy的性能。Pandas 2.1增强了对PyArrow的支持。官方在这次更新中使用最大的高亮字体宣布 PyArrow 将是 Pandas 3.0的基础依赖,这说明Panda 是认定了PyArrow了。

映射所有数组类型时可以忽略NaN类值

在以前版本,可空类型上调用map会在存在类似nan的值时触发错误。而现在可以设定na_action= " ignore "参数,将忽略所有类型数组中的nan值。

以下是发行说明中的一个例子:

代码语言:javascript
复制
 In [5]: ser = pd.Series(["a", "b", np.nan], dtype="category")
 
 In [6]: ser.map(str.upper, na_action="ignore")
 Out[6]: 
 0      A
 1      B
 2    NaN
 dtype: category
 Categories (2, object): ['A', 'B']
 
 ##no errors !

字符串的默认类型

默认情况下,所有字符串都存储在具有NumPy对象dtype的列中,如果你安装了PyArrow,则会将所有字符串推断为PyArrow支持的字符串,这个选项需要使用这个参数设置:

代码语言:javascript
复制
 pd.options.future.infer_string = True

Copy-On-Write改进

写时复制在很久以前就出现了。在Pandas中有时你对数据做一些操作,修改的不是数据源的副本,而是数据源本身。例子:

代码语言:javascript
复制
 In [5]: pd.options.mode.copy_on_write = True
 
 In [6]: df = pd.DataFrame({"foo": [1, 2, 3], "bar": [4, 5, 6]})
 
 In [7]: subset = df["foo"]
 
 In [8]: subset.iloc[0] = 100
 
 In [9]: df
 Out[9]: 
    foo  bar
 0    1    4
 1    2    5
 2    3    6

写时复制是一种防止意外可变性的机制。当从其他数据推断数据时,可以保证只更改副本。这意味着代码将更加统一。Pandas将识别何时复制对象,并且只在必要时复制对象。在Pandas 2.1中,花了很多精力使许多地方的Copy-On-Write保持一致。

新的日期方法

在Pandas 2.1中,增加了一组新处理日期的新方法。

以下是一些最值得注意的方法:

  • Series.dt.is_month_start,
  • Series.dt.is_month_end,
  • Series.dt.is_year_start,
  • Series.dt.is_year_end,
  • Series.dt.is_quarter_start,
  • Series.dt.is_quarter_end,
  • Series.dt.days_in_month,
  • Series.dt.unit,
  • Series.dt.normalize,
  • Series.dt.day_name(),
  • Series.dt.month_name(),

这些方法对我们实际应用来说还是很好的

Python 3.9

pandas 2.1.0支持的最低版本是Python 3.9,也就是说我们如果有低版本的Python项目,要尽快升级了,或者说新项目的话最低也要3.9了

总结

在这次更新中提到了Pandas3.0,说明官方已经开始对它进行设计了,而且也强调了PyArrow的重要性,所以要用好Pandas,PyArrow的基础是需要掌握的。官网的地址:

https://pandas.pydata.org/docs/whatsnew/v2.1.0.html

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 更好的PyArrow支持
  • 映射所有数组类型时可以忽略NaN类值
  • 字符串的默认类型
  • Copy-On-Write改进
  • 新的日期方法
  • Python 3.9
  • 总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档