前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >手把手带你复现NC图表之Figure6

手把手带你复现NC图表之Figure6

作者头像
生信技能树jimmy
发布2023-09-26 20:24:43
2900
发布2023-09-26 20:24:43
举报
文章被收录于专栏:单细胞天地

复现文章信息:

题目:Single-cell analysis reveals prognostic fibroblast subpopulations linked to molecular and immunological subtypes of lung cancer 期刊:Nature Communications 日期:2023年1月31日 DOI: 10.1038/s41467-023-35832-6

复现图——Figure 6

使用多个NSCLC队列进行生存分析

R包载入与数据准备

代码语言:javascript
复制
options(stringsAsFactors = F)
pardefault <- par()
library(Seurat)
library(tidyverse)
library(ggpubr)
library(ggsci)
library(survival)
library(survminer)
library(forestmodel)
data_directory <- "H:\\文献复现\\6\\" 
source(paste0(data_directory, "0_NewFunctions.R"))

load(paste0(data_directory, "BulkData_Zenodo.Rdata"))
load(paste0(data_directory, "IntegratedFibs_Zenodo.Rdata"))

LUAD单变量COX回归

为了检测肌成纤维细胞丰度作为LUAD患者分层预后生物标志物的可能性,使用TCGA-LUAD数据集测试

代码语言:javascript
复制
#为了研究将肌成纤维细胞丰度作为LUAD患者分层的预后生物标志物的潜力,我们使用TCGA-LUAD数据集作为测试队列,以确定将样本分类为肌成纤维细胞高和低的最佳阈值

ys2test <- rev(seq(1,10, by = 1))
cox.zph_OK <- list()
for(DS in levels(Merged.LUADtraits$Dataset.factor)[]){
  surv_data <- Merged.LUADtraits[Merged.LUADtraits$Sample.Subtype == "LUAD" &
                               Merged.LUADtraits$Dataset.factor == DS, ]
  
  cox.zph_p = 0
  for(i in ys2test){
    if (cox.zph_p < 0.05) {
      split_data <- survSplit(Surv(OS_YEARS, OS) ~ 
                                Myo_Fibs.pct,
                              zero = -0.1,
                              data = surv_data[!is.na(surv_data$OS_YEARS), ],
                              cut = i, episode = "tgroup", id = "id")
      model.coxph2 <- coxph(Surv(OS_YEARS, OS) ~ 
                              Myo_Fibs.pct,
                            data = split_data[split_data$tgroup == 1,])
      cox.zph_res = cox.zph(model.coxph2)
      cox.zph_res.sum = c(i, cox.zph_res$table[1,3])
      cox.zph_p <- cox.zph_res$table[1,3]
      names(cox.zph_res.sum) <- c("OS_YEARS", "cox.zph_p")
    }
    cox.zph_OK[[DS]] <- cox.zph_res.sum
  }
}
do.call(rbind, cox.zph_OK)
max_year <- min(do.call(rbind, cox.zph_OK)[,1])
#分别对每个数据集进行Cox回归分析
split_data <- list()
for(DS in levels(Merged.LUADtraits$Dataset.factor)[]){
  surv_data <- Merged.LUADtraits[Merged.LUADtraits$Sample.Subtype == "LUAD" &
                               Merged.LUADtraits$Dataset.factor == DS, ]
  split_data[[DS]] <- survSplit(Surv(OS_YEARS, OS) ~ 
                                  Myo_Fibs.pct + Alveolar_Fibs.pct + Adventitial_Fibs.pct,
                                zero = -0.1,
                                data = surv_data[!is.na(surv_data$OS_YEARS), ],
                                cut = max_year, episode = "tgroup", id = "id")
}
Myo_cox.res <- list()
Myo_cox.res[["TCGA"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                  scale(Myo_Fibs.pct),
                                data =  split_data[["TCGA"]][split_data[["TCGA"]]$tgroup == 1,])
Myo_cox.res[["GSE68465"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                     scale(Myo_Fibs.pct),
                                   data =  split_data[["GSE68465"]][split_data[["GSE68465"]]$tgroup == 1,])
Myo_cox.res[["GSE31210"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                     scale(Myo_Fibs.pct),
                                   data =  split_data[["GSE31210"]][split_data[["GSE31210"]]$tgroup == 1,])
Myo_cox.res[["GSE72094"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                      scale(Myo_Fibs.pct),
                                    data =  split_data[["GSE72094"]][split_data[["GSE72094"]]$tgroup == 1,])
forestmodel::forest_model(model_list = Myo_cox.res, panels = panels)
Myo_LUAD_Zscores <- list()
for(DS in names(Myo_cox.res)){
  Myo_LUAD_Zscores[[DS]] <- summary(Myo_cox.res[[DS]])$coefficients[4:5]
}
Myo_LUAD_pvals <- list()
for(DS in names(Myo_cox.res)){
  Myo_LUAD_pvals[[DS]] <- summary(Myo_cox.res[[DS]])$coefficients[5]
}
Myo_LUAD_pvals
metap::sumz(unlist(Myo_LUAD_pvals))
Alveolar_cox.res <- list()
Alveolar_cox.res[["TCGA"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                  scale(Alveolar_Fibs.pct),
                                data =  split_data[["TCGA"]][split_data[["TCGA"]]$tgroup == 1,])
Alveolar_cox.res[["GSE68465"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                     scale(Alveolar_Fibs.pct),
                                   data =  split_data[["GSE68465"]][split_data[["GSE68465"]]$tgroup == 1,])
Alveolar_cox.res[["GSE31210"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                     scale(Alveolar_Fibs.pct),
                                   data =  split_data[["GSE31210"]][split_data[["GSE31210"]]$tgroup == 1,])
Alveolar_cox.res[["GSE72094"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                      scale(Alveolar_Fibs.pct),
                                    data =  split_data[["GSE72094"]][split_data[["GSE72094"]]$tgroup == 1,])

forestmodel::forest_model(model_list = Alveolar_cox.res, panels = panels)
Alveolar_LUAD_Zscores <- list()
for(DS in names(Alveolar_cox.res)){
  Alveolar_LUAD_Zscores[[DS]] <- summary(Alveolar_cox.res[[DS]])$coefficients[4:5]
}
Alveolar_LUAD_pvals <- list()
for(DS in names(Alveolar_cox.res)){
  Alveolar_LUAD_pvals[[DS]] <- summary(Alveolar_cox.res[[DS]])$coefficients[5]
}
Alveolar_LUAD_pvals
metap::sumz(unlist(Alveolar_LUAD_pvals))
Adventitial_cox.res <- list()
Adventitial_cox.res[["TCGA"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                  scale(Adventitial_Fibs.pct),
                                data =  split_data[["TCGA"]][split_data[["TCGA"]]$tgroup == 1,])
Adventitial_cox.res[["GSE68465"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                     scale(Adventitial_Fibs.pct),
                                   data =  split_data[["GSE68465"]][split_data[["GSE68465"]]$tgroup == 1,])
Adventitial_cox.res[["GSE31210"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                     scale(Adventitial_Fibs.pct),
                                   data =  split_data[["GSE31210"]][split_data[["GSE31210"]]$tgroup == 1,])
Adventitial_cox.res[["GSE72094"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                      scale(Adventitial_Fibs.pct),
                                    data =  split_data[["GSE72094"]][split_data[["GSE72094"]]$tgroup == 1,])
forestmodel::forest_model(model_list = Adventitial_cox.res, panels = panels)
Adventitial_LUAD_Zscores <- list()
for(DS in names(Adventitial_cox.res)){
  Adventitial_LUAD_Zscores[[DS]] <- summary(Adventitial_cox.res[[DS]])$coefficients[4:5]
}

LUAD_zScores.df <- data.frame(Z = do.call(rbind, Myo_LUAD_Zscores)[,1],
                              p = do.call(rbind, Myo_LUAD_Zscores)[,2],
                              SubPop = "Myo",
                              DS = rownames(do.call(rbind, Myo_LUAD_Zscores)))
LUAD_zScores.df <- rbind(LUAD_zScores.df,
                         data.frame(Z = do.call(rbind, Alveolar_LUAD_Zscores)[,1],
                                    p = do.call(rbind, Alveolar_LUAD_Zscores)[,2],
                                    SubPop = "Alveolar",
                                    DS = rownames(do.call(rbind, Alveolar_LUAD_Zscores))))
LUAD_zScores.df <- rbind(LUAD_zScores.df,
                         data.frame(Z = do.call(rbind, Adventitial_LUAD_Zscores)[,1],
                                    p = do.call(rbind, Adventitial_LUAD_Zscores)[,2],
                                    SubPop = "Adventitial",
                                    DS = rownames(do.call(rbind, Adventitial_LUAD_Zscores))))
LUAD_zScores.df$Subtype <- "LUAD"
reshape2::melt(LUAD_zScores.df, id.vars = c("SubPop", "DS"), measure.vars = "Z") %>%
  ggplot(aes(y = value, x = SubPop, fill = SubPop)) +
  geom_boxplot(outlier.shape = NA) +
  geom_point(size = 1) + 
  theme_pubr(base_size = 7) +
  scale_fill_manual(values = Fibs_col.palette) +
  geom_hline(yintercept = 0, linetype = "dashed") +
  ylab("Good Survival <- CoxPH Zscore -> Poor Survival") +
  theme(axis.title.y = element_blank()) +
  coord_flip()

LUSC单变量COX回归

代码语言:javascript
复制
ys2test <- rev(seq(1,10, by = 1))
cox.zph_OK <- list()
for(DS in unique(Merged.LUSCtraits$Dataset)){
  surv_data <- Merged.LUSCtraits[Merged.LUSCtraits$Sample.Subtype == "LUSC" &
                                   Merged.LUSCtraits$Dataset == DS, ]
  cox.zph_p = 0
  for(i in ys2test){
    if (cox.zph_p < 0.05) {
      split_data <- survSplit(Surv(OS_YEARS, OS) ~ 
                                Myo_Fibs.pct,# + Stage_4cat + Age,
                              zero = -0.1,
                              data = surv_data[!is.na(surv_data$OS_YEARS), ],
                              cut = i, episode = "tgroup", id = "id")
      model.coxph2 <- coxph(Surv(OS_YEARS, OS) ~ 
                              Myo_Fibs.pct,
                            data = split_data[split_data$tgroup == 1,])
      cox.zph_res = cox.zph(model.coxph2)
      cox.zph_res.sum = c(i, cox.zph_res$table[1,3])
      cox.zph_p <- cox.zph_res$table[1,3]
      names(cox.zph_res.sum) <- c("OS_YEARS", "cox.zph_p")
    }
    cox.zph_OK[[DS]] <- cox.zph_res.sum
  }
}
do.call(rbind, cox.zph_OK)
max_year <- 4
#分别对每个数据集进行Cox回归分析
split_data <- list()
for(DS in unique(Merged.LUSCtraits$Dataset)[]){
  surv_data <- Merged.LUSCtraits[Merged.LUSCtraits$Sample.Subtype == "LUSC" &
                                   Merged.LUSCtraits$Dataset == DS, ]
  split_data[[DS]] <- survSplit(Surv(OS_YEARS, OS) ~ 
                                  Myo_Fibs.pct + Alveolar_Fibs.pct + Adventitial_Fibs.pct,
                                zero = -0.1,
                                data = surv_data[!is.na(surv_data$OS_YEARS), ],
                                cut = max_year, episode = "tgroup", id = "id")
}
Myo_cox.res <- list()
Myo_cox.res[["TCGA"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                  scale(Myo_Fibs.pct),
                                data =  split_data[["TCGA"]][split_data[["TCGA"]]$tgroup == 1,])
Myo_cox.res[["GSE157009"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                     scale(Myo_Fibs.pct),
                                   data =  split_data[["GSE157009"]][split_data[["GSE157009"]]$tgroup == 1,])
Myo_cox.res[["GSE157010"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                     scale(Myo_Fibs.pct),
                                   data =  split_data[["GSE157010"]][split_data[["GSE157010"]]$tgroup == 1,])
Myo_cox.res[["GSE4573"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                      scale(Myo_Fibs.pct),
                                    data =  split_data[["GSE4573"]][split_data[["GSE4573"]]$tgroup == 1,])
forestmodel::forest_model(model_list = Myo_cox.res, panels = panels)
Myo_LUSC_Zscores <- list()
for(DS in names(Myo_cox.res)){
  Myo_LUSC_Zscores[[DS]] <- summary(Myo_cox.res[[DS]])$coefficients[4:5]
}
Alveolar_cox.res <- list()
Alveolar_cox.res[["TCGA"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                  scale(Alveolar_Fibs.pct),
                                data =  split_data[["TCGA"]][split_data[["TCGA"]]$tgroup == 1,])
Alveolar_cox.res[["GSE157009"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                       scale(Alveolar_Fibs.pct),
                                     data =  split_data[["GSE157009"]][split_data[["GSE157009"]]$tgroup == 1,])
Alveolar_cox.res[["GSE157010"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                       scale(Alveolar_Fibs.pct),
                                     data =  split_data[["GSE157010"]][split_data[["GSE157010"]]$tgroup == 1,])
Alveolar_cox.res[["GSE4573"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                     scale(Alveolar_Fibs.pct),
                                   data =  split_data[["GSE4573"]][split_data[["GSE4573"]]$tgroup == 1,])
forestmodel::forest_model(model_list = Alveolar_cox.res, panels = panels)
Alveolar_LUSC_Zscores <- list()
for(DS in names(Alveolar_cox.res)){
  Alveolar_LUSC_Zscores[[DS]] <- summary(Alveolar_cox.res[[DS]])$coefficients[4:5]
}
Adventitial_cox.res <- list()
Adventitial_cox.res[["TCGA"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                  scale(Adventitial_Fibs.pct),
                                data =  split_data[["TCGA"]][split_data[["TCGA"]]$tgroup == 1,])
Adventitial_cox.res[["GSE157009"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                       scale(Adventitial_Fibs.pct),
                                     data =  split_data[["GSE157009"]][split_data[["GSE157009"]]$tgroup == 1,])
Adventitial_cox.res[["GSE157010"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                       scale(Adventitial_Fibs.pct),
                                     data =  split_data[["GSE157010"]][split_data[["GSE157010"]]$tgroup == 1,])
Adventitial_cox.res[["GSE4573"]]  <- coxph(Surv(OS_YEARS, OS) ~ 
                                     scale(Adventitial_Fibs.pct),
                                   data =  split_data[["GSE4573"]][split_data[["GSE4573"]]$tgroup == 1,])
forestmodel::forest_model(model_list = Adventitial_cox.res, panels = panels)
Adventitial_LUSC_Zscores <- list()
for(DS in names(Adventitial_cox.res)){
  Adventitial_LUSC_Zscores[[DS]] <- summary(Adventitial_cox.res[[DS]])$coefficients[4:5]
}
LUSC_zScores.df <- data.frame(Z = do.call(rbind, Myo_LUSC_Zscores)[,1],
                              p = do.call(rbind, Myo_LUSC_Zscores)[,2],
                              SubPop = "Myo",
                              DS = rownames(do.call(rbind, Myo_LUSC_Zscores)))
LUSC_zScores.df <- rbind(LUSC_zScores.df,
                         data.frame(Z = do.call(rbind, Alveolar_LUSC_Zscores)[,1],
                                    p = do.call(rbind, Alveolar_LUSC_Zscores)[,2],
                                    SubPop = "Alveolar",
                                    DS = rownames(do.call(rbind, Alveolar_LUSC_Zscores))))
LUSC_zScores.df <- rbind(LUSC_zScores.df,
                         data.frame(Z = do.call(rbind, Adventitial_LUSC_Zscores)[,1],
                                    p = do.call(rbind, Adventitial_LUSC_Zscores)[,2],
                                    SubPop = "Adventitial",
                                    DS = rownames(do.call(rbind, Adventitial_LUSC_Zscores))))
LUSC_zScores.df$Subtype <- "LUSC"

Figure 6A

散点图显示使用不同截点按肌成纤维细胞丰度对TCGA中LUAD25样本进行二分的标准化对数秩生存统计量(与总生存率的相关性)的变化。

代码语言:javascript
复制
Fig_6A <- 
  data.frame(stat = LUAD.Opt_cut$Myo_Fibs.pct$stats,
             x = LUAD.Opt_cut$Myo_Fibs.pct$cuts) %>%
  ggplot(aes(x = x, y = stat, colour = x < LUAD.Opt_cut$cutpoint[1,1])) +
  geom_point(size = 2) +
  theme_pubr(base_size = 15) +
  theme(legend.position = "none") +
  scale_colour_manual(values =  c(pal_d3()(3)[3], "grey70")) +
  xlab("Myo (% of all fibroblasts)") +
  ylab("Standardized Log-Rank statistic") +
  geom_vline(xintercept = LUAD.Opt_cut$cutpoint[1,1], 
             linetype = "dashed") +
  annotate("label", y = 1, size = 5,
           label = paste("Max ranked\nCutpoint =",
                         signif(LUAD.Opt_cut$cutpoint[1,1],3)),
           x =  LUAD.Opt_cut$cutpoint[1,1],
           label.size = NA)

Fig_6A

Figure 6B

显示TCGA-LUAD中25样品中肌成纤维细胞丰度测量值分布的密度图

代码语言:javascript
复制
Fig_6B <- 
  Opt_cut.plot$Myo_Fibs.pct$distribution +
  theme_pubr(base_size = 15) +
  scale_fill_manual(values =  c(pal_d3()(3)[3], "grey70"))+
  scale_colour_manual(values =  c(pal_d3()(3)[3], "grey70")) +
  theme(legend.position = "none", plot.title = element_blank()) +
  xlab("Myo (% of all fibroblasts)")
Fig_6B 

Figure 6C

代码语言:javascript
复制
#生存曲线数据整理
Myo.ggsurvplot_list <- list()
for(i in levels(Merged.LUADtraits$Dataset.factor)){
  cox_res <- summary(coxph(Surv(OS_YEARS, OS) ~ Myo_cat,
                           data = Merged.LUADtraits[Merged.LUADtraits$Sample.Subtype == "LUAD" &
                                                      Merged.LUADtraits$Dataset.factor == i, ]))
  Myo.ggsurvplot_list[[i]] <- ggsurvplot(survfit(Surv(OS_YEARS, OS) ~ Myo_cat,
                                                 data = Merged.LUADtraits[Merged.LUADtraits$Sample.Subtype == "LUAD" &
                                                                            Merged.LUADtraits$Dataset.factor == i, ]),
                                         main = i,
                                         pval = signif(cox_res$logtest[3],3), pval.coord = c(0,0.15), pval.size = 10,
                                         conf.int = F, 
                                         risk.table = TRUE, risk.table.title = element_blank(),
                                         risk.table.fontsize = 5,tables.height = 0.4,
                                         risk.table.pos = "in",
                                         font.tickslab = 17,
                                         censor.shape = 124, censor.size = 4,
                                         legend.labs = c("Low", "High"),
                                         palette = c("grey70",pal_d3()(3)[3]),
                                         ggtheme = theme_pubr(base_size = 17),
                                         risk.table.y.col = T,
                                         legend = c(0.85,0.85), legend.title = element_blank())
  Myo.ggsurvplot_list[[i]]$plot <- Myo.ggsurvplot_list[[i]]$plot + 
    ggtitle(i) + ylab("Overall Survival Rate") +
    theme(axis.text.x = element_blank(), axis.title.x =  element_blank(),
          plot.margin = margin(b= 0)) +
    coord_cartesian(xlim = c(-0.3,NA))
  
  Myo.ggsurvplot_list[[i]]$table <- Myo.ggsurvplot_list[[i]]$table + xlab("Time (Years)")+
    theme(plot.margin = margin(t = 0), plot.background = element_blank()) +
    coord_cartesian(xlim = c(-0.3,NA))
}
#Kaplan-Meier图显示TCGA-LUAD中25队列患者生存率,按肌成纤维细胞丰度使用二分最佳临界点分层
Fig_6C <- 
  ggarrange(Myo.ggsurvplot_list$TCGA$plot + theme(plot.title = element_blank()),
            Myo.ggsurvplot_list$TCGA$table,
            ncol = 1, nrow = 2, heights = c(0.7,0.3), align = "v",
            common.legend = T, legend = "none")


Fig_6C

Figure 6D

代码语言:javascript
复制
#将该阈值应用于三个验证队列,证明了一致的显著患者分层
Fig_6D <- 
  ggarrange(Myo.ggsurvplot_list$GSE72094$plot, Myo.ggsurvplot_list$GSE31210$plot,
           Myo.ggsurvplot_list$GSE68465$plot,
          Myo.ggsurvplot_list$GSE72094$table,  Myo.ggsurvplot_list$GSE31210$table,
           Myo.ggsurvplot_list$GSE68465$table,
          ncol = 3, nrow = 2, heights = c(0.7,0.3), align = "v",
          common.legend = T, legend = "none")

Fig_6D

Figure 6E

散点图显示使用不同截点按肺泡成纤维细胞丰度对TCGA中LUAD25样本进行二分的标准化对数秩生存统计量(与总生存率的相关性)的变化。

代码语言:javascript
复制
Fig_6E <- 
  data.frame(stat = LUAD.Opt_cut$Alveolar_Fibs.pct$stats,
             x = LUAD.Opt_cut$Alveolar_Fibs.pct$cuts) %>%
  ggplot(aes(x = x, y = stat, colour = x < LUAD.Opt_cut$cutpoint[2,1])) +
  geom_point(size = 2) +
  theme_pubr(base_size = 15) +
  theme(legend.position = "none") +
  scale_colour_manual(values =  c(pal_d3()(3)[1], "grey70")) +
  xlab("Alveolar (% of all fibroblasts)") +
  ylab("Standardized Log-Rank statistic") +
  geom_vline(xintercept = LUAD.Opt_cut$cutpoint[2,1], 
             linetype = "dashed") +
  annotate("label", y = 1, size = 5,
           label = paste("Max ranked\nCutpoint =",
                         signif(LUAD.Opt_cut$cutpoint[2,1],3)),
           x =  LUAD.Opt_cut$cutpoint[2,1],
           label.size = NA)

Fig_6E

Figure 6F

显示TCGA-LUAD中25样品中肺泡成纤维细胞丰度测量值分布的密度图

代码语言:javascript
复制
Fig_6F <- 
  Opt_cut.plot$Alveolar_Fibs.pct$distribution +
  theme_pubr(base_size = 15) +
  scale_fill_manual(values =  c(pal_d3()(3)[1], "grey70"))+
  scale_colour_manual(values =  c(pal_d3()(3)[1], "grey70")) +
  theme(legend.position = "none", plot.title = element_blank()) +
  xlab("Alveolar (% of all fibroblasts)")

Fig_6F

Figure 6G

代码语言:javascript
复制
#生存曲线数据整理
Alv.ggsurvplot_list <- list()
for(i in levels(Merged.LUADtraits$Dataset.factor)){
  cox_res <- summary(coxph(Surv(OS_YEARS, OS) ~ Alv_cat,
                           data = Merged.LUADtraits[Merged.LUADtraits$Sample.Subtype == "LUAD" &
                                                      Merged.LUADtraits$Dataset.factor == i, ]))
  Alv.ggsurvplot_list[[i]] <- ggsurvplot(survfit(Surv(OS_YEARS, OS) ~ Alv_cat,
                                                 data = Merged.LUADtraits[Merged.LUADtraits$Sample.Subtype == "LUAD" &
                                                                            Merged.LUADtraits$Dataset.factor == i, ]),
                                         main = i,
                                         pval = T, pval.coord = c(0,0.15), pval.size = 10,
                                         conf.int = F, 
                                         risk.table = TRUE, risk.table.title = element_blank(),
                                         risk.table.fontsize = 5,tables.height = 0.4,
                                         risk.table.pos = "in",
                                         font.tickslab = 17,
                                         censor.shape = 124, censor.size = 4,
                                         legend.labs = c("Low", "High"),
                                         palette = c("grey70",pal_d3()(3)[1]),
                                         ggtheme = theme_pubr(base_size = 17),
                                         risk.table.y.col = T,
                                         legend = c(0.85,0.85), legend.title = element_blank())
  Alv.ggsurvplot_list[[i]]$plot <- Alv.ggsurvplot_list[[i]]$plot + 
    ggtitle(i) + ylab("Overall Survival Rate") +
    theme(axis.text.x = element_blank(), axis.title.x =  element_blank(),
      plot.margin = margin(b= 0)) +
    coord_cartesian(xlim = c(-0.3,NA))
  
  Alv.ggsurvplot_list[[i]]$table <- Alv.ggsurvplot_list[[i]]$table + xlab("Time (Years)")+
    theme(plot.margin = margin(t = 0), plot.background = element_blank()) +
    coord_cartesian(xlim = c(-0.3,NA))
}
#Kaplan-Meier图显示TCGA-LUAD中25队列患者生存率,按肺泡成纤维细胞丰度使用二分最佳临界点分层
Fig_6G <- 
  ggarrange(Alv.ggsurvplot_list$TCGA$plot + theme(plot.title = element_blank()),
            Alv.ggsurvplot_list$TCGA$table,
            ncol = 1, nrow = 2, heights = c(0.7,0.3), align = "v",
            common.legend = T, legend = "none")

Fig_6G

Figure 6H

将该阈值应用于三个验证队列,证明了一致的显著患者分层

代码语言:javascript
复制
Fig_6H <- 
  ggarrange(Alv.ggsurvplot_list$GSE72094$plot, Alv.ggsurvplot_list$GSE31210$plot,
          Alv.ggsurvplot_list$GSE68465$plot,
          Alv.ggsurvplot_list$GSE72094$table,  Alv.ggsurvplot_list$GSE31210$table,
          Alv.ggsurvplot_list$GSE68465$table,
          ncol = 3, nrow = 2, heights = c(0.7,0.3), align = "v",
          common.legend = T, legend = "none")

Fig_6H

多变量分类分析

森林图显示协变量独立风险比和上述分析的所有LUAD患者队列的4年总生存率多变量COX回归分析的校正p值,使用肌成纤维细胞丰度、疾病分期和患者年龄作为自变量

代码语言:javascript
复制
max_year <- 4
surv_data <- Merged.LUADtraits[Merged.LUADtraits$Dataset.factor %in% c("TCGA", "GSE68465", "GSE72094", "GSE31210"), ]
split_data <- survSplit(Surv(OS_YEARS, OS) ~ 
                          Myo_cat + Stage_4cat + Age,
                        zero = -0.1,
                        data = surv_data[!is.na(surv_data$OS_YEARS), ],
                        cut = max_year, episode = "tgroup", id = "id")
names(split_data)[1:2] <- c("Myo", "Stage")
Myo_cox.res <- coxph(Surv(OS_YEARS, OS) ~ 
                       Myo + Stage + Age,
                     data =  split_data[split_data$tgroup == 1,])
summary(Myo_cox.res)$coefficients

Figure 6I

代码语言:javascript
复制
Fig_6I <- forest_model(Myo_cox.res,
                       format_options = forest_model_format_options(
                         banded = T, text_size = 5, point_size = 4)) 

Fig_6I

Figure 6J

代码语言:javascript
复制
#森林图显示协变量独立风险比(±95%置信区间)和上述所有LUAD患者队列4年总生存率的多变量考克斯回归分析的校正p值,使用肺泡成纤维细胞丰度、疾病分期和患者年龄作为自变量
surv_data <- Merged.LUADtraits[Merged.LUADtraits$Dataset.factor %in% c("TCGA", "GSE68465", "GSE72094", "GSE31210"), ]
split_data <- survSplit(Surv(OS_YEARS, OS) ~ 
                          Alv_cat + Stage_4cat + Age,
                        zero = -0.1,
                        data = surv_data[!is.na(surv_data$OS_YEARS), ],
                        cut = max_year, episode = "tgroup", id = "id")
names(split_data)[1:2] <- c("Alveolar", "Stage")
Alv_cox.res <- coxph(Surv(OS_YEARS, OS) ~ 
                       Alveolar + Stage + Age,
                     data =  split_data[split_data$tgroup == 1,])

Fig_6J <- forest_model(Alv_cox.res,
                    format_options = forest_model_format_options(
                      banded = T, text_size = 2.5, point_size = 1)) 

Fig_6J

Figure 6

多个LUAD数据集中,肺泡和表皮成纤维细胞丰度与更好的总生存率相关。这种关联在肺泡成纤维细胞中尤其一致,在所有分析的数据集中都是显著的。因此,采用与上述相同的方法来测试将肺泡成纤维细胞丰度作为预后标志物的可能性。同样,这表明将LUAD队列分为肺泡成纤维细胞高或低在分层总生存率方面始终有效,并且这种关联与疾病分期和患者年龄无关。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-06-16 22:12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 单细胞天地 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 复现图——Figure 6
    • R包载入与数据准备
      • LUAD单变量COX回归
        • LUSC单变量COX回归
          • Figure 6A
            • Figure 6B
              • Figure 6C
                • Figure 6D
                  • Figure 6E
                    • Figure 6F
                      • Figure 6G
                        • Figure 6H
                          • 多变量分类分析
                            • Figure 6I
                              • Figure 6J
                              • Figure 6
                              领券
                              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档