前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >信号补零对信号频谱的影响

信号补零对信号频谱的影响

作者头像
Gnep@97
发布2023-10-26 15:29:00
6920
发布2023-10-26 15:29:00
举报

前言

本文对信号补零前与补零后分别做 FFT,对频谱进行分析。

先抛出结论: 补 1 次零相当于在原始频谱图中每两个频率之间插入1个频率值,补 2 次零相当于在原始频谱图中每两个频率之间插入 2 个频率值,并且原始频率值的位置及其幅值保持不变。因此, 补零会使频谱图中的频率点的数量增加,从而使得频谱图更加的光滑连续,但是补零不能对频谱图中的频率分辨率、频率值以及幅值有所改善。


一、 什么是补零

FFT 运算点数(

M

) > 采样点数(

N

)时,

fft(xn,M)

函数对信号

x_n

进行尾补零操作即在该信号尾部添加多个值为 0 的数据点以使信号总点数

N

增至 FFT 运算所需点数

M

二、案例

目前有一个信号 ,这个信号中仅包含两个正(余)弦波,一个是

1MHz

,一个是

1.5MHz

,即

x=cos(2\pi*1000000t)+cos(2\pi*1050000t)

。设定采样频率为

F_s=100MHz

,如果采 1000 个点,那么时域信号的时长就有

10\mu s

。(采样率*采样时间=采样点数)

三、补零前仿真及分析

直接对这 1000 个数据点做 FFT

1、补零前 MATLAB 源码

代码语言:javascript
复制
%% [预处理]
clc;   % 清除命令窗口
clear; % 清除工作空间的变量和函数
clf;   % 清除当前图形

%% [采样参数]
fs = 100e6;         % 采样频率 (Hz)  
ts = 1/fs;          % 采样周期 (s)
N  = 1000;          % 采样点数 (个)
n  = 0:N-1;         % 采样点索引
t  = n*ts;          % 采样时间轴

%% [未补零 被采信号 && 绘制时域波形]
fa = 1e6;           % 信号 a 的频率
fb = 1.05e6;        % 信号 b 的频率
xn = cos(2*pi*fa*t) + cos(2*pi*fb*t);   % 被采信号 = 信号a + 信号b

figure(1);
plot(t, xn);
axis([0 10e-6 -inf inf]);  % x 轴范围设置成[0,10us],y 轴范围最小值和最大值都为无穷
title('xn 时域图');
ylabel('幅度/V');
xlabel('时间/s');

%% [未补零 被采信号 && 绘制频谱图]
M = 1000;                   % FFT 运算点数
X = fft(xn, M);             % FFT 输出值
X = [X(1)/N,X(2:M)*2/N];    % 幅度轴,对FFT输出值进行归一化处理,得到幅度轴上的值。
k = 0:M-1;                  % 频率点索引
f = fs*k/(M-1);             % 频率轴

figure(2);
plot(f, abs(X));
axis([0.5e6 1.5e6 0 1.5]);  % x 轴范围设置成[0.5e6,1.5e6],y 轴范围设置成[0,1.5]
title('xn 频谱图');
ylabel('X(f)');
xlabel('频率/Hz');

2、仿真及结果分析

①、
x_n

时域图

请添加图片描述
请添加图片描述
②、
x_n

频谱图

请添加图片描述
请添加图片描述

如上图所示,直接对这 1000 个数据点做快速傅里叶变换,将得到频谱,只有一个谱峰,在

1MHz

的地方,由于频谱点稀疏,在

1MHz

根本无法将

1MHz

1.05MHz

的两个频率分开,这是因为频率分辨率不够,采样率

100MHz

,FFT 点数 1000 个点,频率分辨率 = 采样率 /FFT 点数 =

100 KHz

,所以无法区分

50KHz

四、补零后仿真及分析

对数据补零,增加 FFT 点数,比如补 6000 个零,做 7000 个点的 FFT。

1、补6000个零且1000采样点

①、 MATLAB 源码
代码语言:javascript
复制
%% [预处理]
clc;   % 清除命令窗口
clear; % 清除工作空间的变量和函数
clf;   % 清除当前图形

%% [采样参数]
fs = 100e6;         % 采样频率 (Hz)  
ts = 1/fs;          % 采样周期 (s)
N  = 1000;          % 采样点数 (个)
n  = 0:N-1;         % 采样点索引
t  = n*ts;          % 采样时间轴

%% [被采信号 && 绘制时域波形] 
fa = 1e6;           % 信号 a 的频率
fb = 1.05e6;        % 信号 b 的频率
xn = cos(2*pi*fa*t) + cos(2*pi*fb*t);   % 被采信号 = 信号a + 信号b

figure(1);
plot(t, xn);
axis([0 10e-6 -inf inf]);  % x 轴范围设置成[0,10us],y 轴范围最小值和最大值都为无穷
title('xn 时域图');
ylabel('幅度/V');
xlabel('时间/s');

%% [尾补零 被采信号 && 绘制时域波形]
xnwei=[xn zeros(1,6000)];	% 补6000个零
M = length(xnwei);          % FFT 运算点数
X = fft(xnwei, M);          % FFT 输出值
X = [X(1)/N,X(2:M)*2/N];    % 幅度轴,对FFT输出值进行归一化处理,得到幅度轴上的值。
k = 0:M-1;                  % 频率点索引
f = fs*k/(M-1);             % 频率轴

figure(2);
plot(f, abs(X));
axis([0.5e6 1.5e6 0 1.5]);  % x 轴范围设置成[0.5e6,1.5e6],y 轴范围设置成[0,1.5]
title('补零后共7000个数据点做FFT的频谱');
ylabel('X(f)');
xlabel('频率/Hz');
②、仿真及结果分析
请添加图片描述
请添加图片描述

可以看到信号频谱变得平滑了,但是仍然无法区分

1MHz

1.05MHz

这里就要引出一个波形分辨率的概念,虽然补零了,提高了频谱分辨率,但是无法提高波形分辨率

2、波形分辨率

发现频率成分无法被区分开,第一反应就是:频率分辨率不够,那么,如何提高频率分辨率呢?首先要清楚,这里存在两种类型的频率分辨率。

一种叫波形分辨率,其由原始数据的时间长度决定:

\Delta R_w=\frac{1}{T}

另一种可以称之为视觉分辨率FFT分辨率,其由采样频率和参与 FFT 的数据点数决定:

\Delta R_{fft}=\frac{F_s}{N_{fft}}

之所以要区分,就是因为后面要进行 “补零” 操作。如果不补零,直接对原始数据做 FFT,那么这两种分辨率是相等的。

例如上面,有:

\Delta R_w=\frac{1}{10\mu s}=\Delta R_{fft}=\frac{100MHz}{1000}=100KHz

所以要想提高波形分辨率,必须提高信号数据本身的长度

3、补6000个零且7000采样点

采样 7000 个信号数据做 FFT,还是补 6000 个零 ,做 7000 个点的 FFT

①、 MATLAB 源码
代码语言:javascript
复制
%% [预处理]
clc;   % 清除命令窗口
clear; % 清除工作空间的变量和函数
clf;   % 清除当前图形

%% [采样参数]
fs = 100e6;         % 采样频率 (Hz)  
ts = 1/fs;          % 采样周期 (s)
N  = 7000;          % 采样点数 (个)
n  = 0:N-1;         % 采样点索引
t  = n*ts;          % 采样时间轴

%% [被采信号 && 绘制时域波形] 
fa = 1e6;           % 信号 a 的频率
fb = 1.05e6;        % 信号 b 的频率
xn = cos(2*pi*fa*t) + cos(2*pi*fb*t);   % 被采信号 = 信号a + 信号b

figure(1);
plot(t, xn);
axis([0 10e-6 -inf inf]);  % x 轴范围设置成[0,10us],y 轴范围最小值和最大值都为无穷
title('xn 时域图');
ylabel('幅度/V');
xlabel('时间/s');

%% [尾补零 被采信号 && 绘制时域波形]
xnwei=[xn zeros(1,6000)];	% 补6000个零
M = length(xnwei);          % FFT 运算点数
X = fft(xnwei, M);          % FFT 输出值
X = [X(1)/N,X(2:M)*2/N];    % 幅度轴,对FFT输出值进行归一化处理,得到幅度轴上的值。
k = 0:M-1;                  % 频率点索引
f = fs*k/(M-1);             % 频率轴

figure(2);
plot(f, abs(X));
axis([0.5e6 1.5e6 0 1.5]);  % x 轴范围设置成[0.5e6,1.5e6],y 轴范围设置成[0,1.5]
title('采样点7000且补零后共7000个数据点做FFT的频谱');
ylabel('X(f)');
xlabel('频率/Hz');
②、仿真及结果分析
请添加图片描述
请添加图片描述

因为此时的波形分辨率为:

\Delta R_w=\frac{1}{70 \mu s}\approx14KHz

,小于

1MHz

1.05MHz

这两个频率成分之间的举例

50KHz

,所以可以看出有两个明显的峰值。

但是会发现

1MHz

对应的幅值为 1,与原始信号中该频率成分的幅值一致,但是

1.05MHz

对应的幅值明显低于 1,但是其周边的点上确有不小的幅值,这就是所谓的频谱泄露,因为数据点的个数影响,使得在

1MHz

处有谱线存在,但在

1.05MHz

处没有谱线存在,使测量结果偏离实际值,同时在实际频率点的能量分散到两侧的其他频率点上,并出现一些幅值较小的假谱。

这是因为在

1.05MHz

那个地方刚好有个频点,也就是出现了所谓的频谱泄漏,还是数据长度不够,但这时是可以通过补零来达到目的。补零 1000 个点,做 8000 点的FFT。

4、补7000个零且7000采样点

采样 7000 个信号数据做 FFT,补 7000 个零 ,做 8000 点的 FFT

①、 MATLAB 源码
代码语言:javascript
复制
%% [预处理]
clc;   % 清除命令窗口
clear; % 清除工作空间的变量和函数
clf;   % 清除当前图形

%% [采样参数]
fs = 100e6;         % 采样频率 (Hz)  
ts = 1/fs;          % 采样周期 (s)
N  = 7000;          % 采样点数 (个)
n  = 0:N-1;         % 采样点索引
t  = n*ts;          % 采样时间轴

%% [被采信号 && 绘制时域波形] 
fa = 1e6;           % 信号 a 的频率
fb = 1.05e6;        % 信号 b 的频率
xn = cos(2*pi*fa*t) + cos(2*pi*fb*t);   % 被采信号 = 信号a + 信号b

figure(1);
plot(t, xn);
axis([0 10e-6 -inf inf]);  % x 轴范围设置成[0,10us],y 轴范围最小值和最大值都为无穷
title('xn 时域图');
ylabel('幅度/V');
xlabel('时间/s');

%% [尾补零 被采信号 && 绘制时域波形]
xnwei=[xn zeros(1,7000)];   % 补7000个零
M = length(xnwei);          % FFT 运算点数
X = fft(xnwei, M);          % FFT 输出值
X = [X(1)/N,X(2:M)*2/N];    % 幅度轴,对FFT输出值进行归一化处理,得到幅度轴上的值。
k = 0:M-1;                  % 频率点索引
f = fs*k/(M-1);             % 频率轴

figure(2);
plot(f, abs(X));
axis([0.5e6 1.5e6 0 1.5]);  % x 轴范围设置成[0.5e6,1.5e6],y 轴范围设置成[0,1.5]
title('采样点7000且补零后共8000个数据点做FFT的频谱');
ylabel('X(f)');
xlabel('频率/Hz');
②、仿真及结果分析
请添加图片描述
请添加图片描述

FFT 分辨率为

F_s/ N=100MHz/8000=12.5KHz

,是这两个频率的公约数,

1MHz = 80*12.5KHz

1.05MHz=84*12.5KHz

,所以谱线同时经过

1MHz

1.05MHz

这两个点。

从上图也可以看到效果也比较理想,将

1MHz

1.05MHz

的两个信号频率分开。

五、补零的好处

  • 使数据 N 为 2 的整次幂,便于使用 FFT
  • 补零后,其实是对 DFT 结果做了插值,克服“栅栏"效应,使谱外观平滑化。我把“栅栏"效应形象理解为,就像站在栅栏旁边透过栅栏看外面风景,栅栏会挡住比较多风景,此时就可能漏掉较大频域分量,但是补零以后,相当于你站远了,风景就看的越来越清楚了。
  • 由于对时域数据的截短必然造成频谱泄露,因此在频谱中可能出现难以辨认的谱峰,补零在一定程度上能消除这种现象。

对信号进行头补零或尾补零再得到的幅频响应相等,相频响应不同

补零会使频谱图中的频率点的数量增加,从而使得频谱图更加的光滑连续,但是补零不能对频谱图中的频率分辨率、频率值以及幅值有所改善。

  • 补零(Zero-padding)是在FFT计算中向输入信号序列的末尾添加零值,从而增加信号的长度。这样做的主要目的是在频域中插入更多的零频率样本,以获得更好的频谱分析图。
  • 补零可以在一定程度上改善频谱图的可视化效果,使频谱图在频率轴上呈现更平滑的外观。这是因为补零增加了离散傅里叶变换(DFT)点数,从而在频率轴上产生更多的插值点。然而,这并不意味着补零改善了频率分辨率或精确性。
  • 频率分辨率由采样率和FFT长度决定,而补零并不改变采样率。补零只是对现有的采样点进行插值,不会增加频率分辨率。实际上,补零只是在现有的频率分辨率上插入了更多的点,而不是提高了分辨率本身。
  • 频率值和幅值也不会因为补零而改变。补零只是在现有的频率轴上插入了更多的点,对原有的频率值和幅值进行了插值。这些插值点的值是通过对原始采样点进行插值计算得到的,而不是通过补零本身引入的信息。
  • 如果希望改善频率分辨率或精确性,需要增加采样率或使用更长的FFT长度。
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2023-10-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 一、 什么是补零
  • 二、案例
  • 三、补零前仿真及分析
    • 1、补零前 MATLAB 源码
      • 2、仿真及结果分析
        • ①、
        • ②、
    • 四、补零后仿真及分析
      • 1、补6000个零且1000采样点
        • ①、 MATLAB 源码
        • ②、仿真及结果分析
      • 2、波形分辨率
        • 3、补6000个零且7000采样点
          • ①、 MATLAB 源码
          • ②、仿真及结果分析
        • 4、补7000个零且7000采样点
          • ①、 MATLAB 源码
          • ②、仿真及结果分析
      • 五、补零的好处
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档