前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >并发编程 | CompletionService - 如何优雅地处理批量异步任务

并发编程 | CompletionService - 如何优雅地处理批量异步任务

原创
作者头像
kfaino
发布2023-11-02 17:29:40
7290
发布2023-11-02 17:29:40
举报
文章被收录于专栏:程序员的日常程序员的日常

引言

上一篇文章中,我们详细地介绍了 CompletableFuture,它是一种强大的并发工具,能帮助我们以声明式的方式处理异步任务。虽然 CompletableFuture 很强大,但它并不总是最适合所有场景的解决方案。

在这篇文章中,我们将介绍 Java 的 CompletionService,这是一种能处理批量异步任务并在完成时获取结果的并发工具。

CompletionServiceCompletableFuture 在很多方面都相似。它们都用于处理异步任务,并且都提供了获取任务完成结果的机制。然而,CompletionService 采用了更传统并发模型,它将生产者和消费者的角色更明确地分离开来。

回顾我们在上一篇文章:并发编程 | 从Future到CompletableFuture 中讨论的需求,我们需要查找并计算一系列旅行套餐的价格。我们使用 CompletableFuture 实现了这个需求,并且代码看起来很简洁明了。然而,事情都有两面性。有些人并不习惯这种写法,觉得CompletableFuture 的实现中存在大量的嵌套,会让代码难以阅读和理解。另外,我们的代码中有大量的函数式编程,这在一定程度上增加了对代码阅读的门槛,如果你不熟悉这种编程范式,代码可能会看起来很混乱。

有没有一种方法,既简洁的同时,又不回到Future的回调地狱陷阱中去?有,CompletionService 。来看下CompletionService 是怎么解决问题。


使用CompletionService 解决问题

如果我们用 CompletionService 来实现这个需求,会是什么样呢?我们来看下代码:

代码语言:java
复制
public List<TravelPackage> searchTravelPackages(SearchCondition searchCondition) throws InterruptedException, ExecutionException {
    ExecutorService executorService = Executors.newFixedThreadPool(10);
    CompletionService<List<TravelPackage>> completionService = new ExecutorCompletionService<>(executorService);

    List<Flight> flights = searchFlights(searchCondition);
    for (Flight flight : flights) {
        // 提交所有的任务
        completionService.submit(() -> {
            List<TravelPackage> travelPackagesForFlight = new ArrayList<>();
            List<Hotel> hotels = searchHotels(flight);
            for (Hotel hotel : hotels) {
                TravelPackage travelPackage = calculatePrice(flight, hotel);
                travelPackagesForFlight.add(travelPackage);
            }
            return travelPackagesForFlight;
        });
    }

    List<TravelPackage> allTravelPackages = new ArrayList<>();
    for (int i = 0; i < flights.size(); i++) {
        // 等待它们的完成
        Future<List<TravelPackage>> future = completionService.take();
        // 如果没完成,这里会阻塞
        List<TravelPackage> travelPackagesForFlight = future.get();
        allTravelPackages.addAll(travelPackagesForFlight);
    }
    executorService.shutdown();
    allTravelPackages.sort(Comparator.comparing(TravelPackage::getPrice));

    return allTravelPackages;
}

通过上面的代码,我们可以看到 CompletionService 提供了一个更传统的并发模型来处理异步任务。相比CompletableFuture 而言,我们的代码中没有复杂的嵌套,代码更加直观。

对初学者来说,这个模型会更容易理解,特别是对于那些不熟悉函数式编程的读者来说。

当然,作为老手的你(假如你弄懂了上篇文章,并实践完),如果你在使用CompletableFuture 过程中发现它嵌套太深太复杂,CompletionService 可能也是个不错的选择。


基于上述代码抽取CompletionService

我们把关键代码抽取出来并简化,就可以得到下面这段代码:

代码语言:java
复制
ExecutorService executor = Executors.newFixedThreadPool(4);
CompletionService<String> completionService = new ExecutorCompletionService<>(executor);

long start = System.currentTimeMillis();
// 提交3个任务
completionService.submit(() -> {
    // 业务返回的实践可能不一样,模拟不一样的任务执行时间
    Thread.sleep(5000);
    return "任务1完成";
});
completionService.submit(() -> {
    // 业务返回的实践可能不一样,模拟不一样的任务执行时间
    Thread.sleep(3000);
    return "任务2完成";
});
completionService.submit(() -> {
    // 业务返回的实践可能不一样,模拟不一样的任务执行时间
    Thread.sleep(500);
    return "任务3完成";
});
completionService.submit(() -> {
    // 业务返回的实践可能不一样,模拟不一样的任务执行时间
    Thread.sleep(500);
    return "任务4完成";
});

// 获取结果
for (int i = 0; i < 4; i++) {
    try {
        Future<String> future = completionService.take();
        // 如果没完成,这里会阻塞
        System.out.println(future.get());
    } catch (InterruptedException | ExecutionException e) {
        e.printStackTrace();
    }
}
executor.shutdown();
long end = System.currentTimeMillis();
System.out.println("任务花费时间: " + (end - start) + " ms");

结合文中代码注释,我把它总结为一句口诀:批量提交,快速获取。

批量我知道啊,就是遍历呗,但是提交到那里去?快速获取是什么意思?别急,我们接着往下看。


使用ExecutorService 实现需求

在回答这个问题之前,我们先来看一下代码。我们先sumbit()一下....然后get()拿到数据....

嗯?这不是和之前ExecutorService 差不多吗?好像可以用它实现啊,你看代码:

代码语言:java
复制
public List<TravelPackage> searchTravelPackages(SearchCondition searchCondition) throws InterruptedException, ExecutionException {
    ExecutorService executorService = Executors.newFixedThreadPool(10);

    List<Flight> flights = searchFlights(searchCondition);
    List<Future<List<TravelPackage>>> futureList = new ArrayList<>();
    for (Flight flight : flights) {
        Future<List<TravelPackage>> future = executorService.submit(() -> {
            List<TravelPackage> travelPackagesForFlight = new ArrayList<>();
            List<Hotel> hotels = searchHotels(flight);
            for (Hotel hotel : hotels) {
                TravelPackage travelPackage = calculatePrice(flight, hotel);
                travelPackagesForFlight.add(travelPackage);
            }
            return travelPackagesForFlight;
        });
        futureList.add(future);
    }

    List<TravelPackage> allTravelPackages = new ArrayList<>();
    for (Future<List<TravelPackage>> future : futureList) {
        List<TravelPackage> travelPackagesForFlight = future.get();
        allTravelPackages.addAll(travelPackagesForFlight);
    }

    executorService.shutdown();
    allTravelPackages.sort(Comparator.comparing(TravelPackage::getPrice));
    return allTravelPackages;
}

看,是不是可以实现了。那CompletionService这玩意存在的意义是啥?我们继续往下看。


提交先后顺序 VS 任务完成快慢顺序

我们先把上面抽取出来的代码执行,结果如下:

代码语言:java
复制
任务3完成
任务4完成
任务2完成
任务1完成
任务花费时间: 5012 ms
Disconnected from the target VM, address: '127.0.0.1:10373', transport: 'socket'

Process finished with exit code 0

然后,我们换成ExecutorService 执行,抽取的ExecutorService 代码如下:

代码语言:java
复制
ExecutorService executor = Executors.newFixedThreadPool(3);
ArrayList<Future<String>> futures = new ArrayList<>();
long start = System.currentTimeMillis();
CountDownLatch latch = new CountDownLatch(4);

futures.add(executor.submit(() -> {
    // 业务返回的实践可能不一样,模拟不一样的任务执行时间
    Thread.sleep(5000);
    latch.countDown();
    return "任务1完成";
}));
futures.add(executor.submit(() -> {
    // 业务返回的实践可能不一样,模拟不一样的任务执行时间
    Thread.sleep(3000);
    latch.countDown();
    return "任务2完成";
}));
futures.add(executor.submit(() -> {
    // 业务返回的实践可能不一样,模拟不一样的任务执行时间
    Thread.sleep(500);
    latch.countDown();
    return "任务3完成";
}));
futures.add(executor.submit(() -> {
    // 业务返回的实践可能不一样,模拟不一样的任务执行时间
    Thread.sleep(500);
    latch.countDown();
    return "任务4完成";
}));

for (Future<String> future : futures) {
    try {
        // 如果没完成,这里会阻塞
        System.out.println(future.get());
    } catch (InterruptedException | ExecutionException e) {
        e.printStackTrace();
    }
}
latch.await();
executor.shutdown();
long end = System.currentTimeMillis();
System.out.println("任务花费时间: " + (end - start) + " ms");

执行结果如下:

代码语言:java
复制
任务1完成
任务2完成
任务3完成
任务4完成
任务花费时间: 5007 ms
Disconnected from the target VM, address: '127.0.0.1:14882', transport: 'socket'

Process finished with exit code 0

细心的你肯定可以看到它们执行结果上的差异。CompletionService 是按照任务时间的顺序消费的。好,搞懂了这个,我们就可以回答上面其中一个问题:

快速获取是什么?

CompletionService是按照任务的快慢,谁先执行完谁就先返回。可以看到上面示例代码的结果,任务3只需要500ms,所以任务3先返回。


CompletionService 的适用场景

既然CompletionService 可以按照任务快慢顺序来返回,我们来看下它适合哪些场景:

执行一组任务并处理结果

上面就是很好的例子,我们可以在任何任务完成后立即获取并处理其结果,以实现快速响应。提高程序的吞吐量(先执行完任务,就有多的线程空闲,可以响应更多任务)。

生产者-消费者模式

我们在最早的开篇说过,CompletionService可以天然地实现生产者-消费者模式。这个模式中,生产者线程负责批量提交任务,消费者线程负责获取并处理任务的结果,而且它也可以安全地在多个线程之间共享


新的问题又出现了,为什么又可以在多个线程之间共享?提交到那里去?快速获取是怎么做到的?以问题为导向,我们来分析下源码。

CompletionService源码分析

提交到那里去?为什么可以在多线程之间共享?

我们先看下构造函数中做了什么:

代码语言:java
复制
public ExecutorCompletionService(Executor executor) {
    if (executor == null)
        throw new NullPointerException();
    this.executor = executor;
    this.aes = (executor instanceof AbstractExecutorService) ?
        (AbstractExecutorService) executor : null;
    this.completionQueue = new LinkedBlockingQueue<Future<V>>();
}

ExecutorCompletionService使用了一个BlockingQueue来存储已完成的任务。因为,任务的提交ExecutorBlockingQueue都是线程安全的。所以多线程共享的数据竞争问题已经在内部解决了。

快速获取是怎么做到的?

我们可以看下submit()方法是怎么实现的。当你提交一个任务时,这个任务被封装在一个QueueingFuture对象中:

代码语言:java
复制
public Future<V> submit(Callable<V> task) {
    if (task == null) throw new NullPointerException();
    RunnableFuture<V> f = newTaskFor(task);
    executor.execute(new QueueingFuture(f));
    return f;
}

QueueingFuture重写了done()方法。当任务完成时,done()方法会被调用,QueueingFuture会将自己添加到completionQueue中:

代码语言:java
复制
private class QueueingFuture extends FutureTask<Void> {
    QueueingFuture(RunnableFuture<V> task) {
        super(task, null);
        this.task = task;
    }
    protected void done() { completionQueue.add(task); } //当任务完成时,将任务添加到队列中
    private final Future<V> task;
}

这样似乎就可以解释,快速获取的机制。完成的任务优先被放入BlockingQueue中按照完成顺序排队。

现在,我换一种表述,你看下是否正确:快的任务在消费的时候就会被排在队列前面先被消费,这样就形成一个任务完成快慢的顺序,第一个被消费到的任务一定是最快的。


第一个被消费到的任务一定是最快的吗?

从上面的代码测试示例结果来看, 确实如此。但是,我很遗憾的告诉你,这句话是错误的。

这句话的正确性是建立在任务数等于线程数的前提下。这就显得很鸡肋了,在在生产中很难达到这个效果,因为资源是稀缺的。当然,我们还是拿代码说话:

代码语言:java
复制
ExecutorService executor = Executors.newFixedThreadPool(3);
        CompletionService<String> completionService = new ExecutorCompletionService<>(executor);
        long start = System.currentTimeMillis();

        completionService.submit(() -> {
            // 业务返回的实践可能不一样,模拟不一样的任务执行时间
            Thread.sleep(5000);
            return "任务1完成";
        });
        completionService.submit(() -> {
            // 业务返回的实践可能不一样,模拟不一样的任务执行时间
            Thread.sleep(3000);
            return "任务2完成";
        });
        completionService.submit(() -> {
            // 业务返回的实践可能不一样,模拟不一样的任务执行时间
            Thread.sleep(6000);
            return "任务3完成";
        });
        completionService.submit(() -> {
            // 业务返回的实践可能不一样,模拟不一样的任务执行时间
            Thread.sleep(500);
            return "任务4完成";
        });

        for (int i = 0; i < 4; i++) {
            try {
                System.out.println(completionService.take().get());
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        }
        executor.shutdown();
        long end = System.currentTimeMillis();
        System.out.println("任务花费时间: " + (end - start) + " ms");

假如遵循执行快慢顺序,理想的状态应该是:4 -> 2 -> 1 -> 3;而结果却是:

代码语言:java
复制
Connected to the target VM, address: '127.0.0.1:5068', transport: 'socket'
任务2完成
任务4完成
任务1完成
任务3完成
任务花费时间: 6020 ms
Disconnected from the target VM, address: '127.0.0.1:5068', transport: 'socket'

这个结果也是意料之外,但在情理之中。因为线程总共只有3个,在1,2,3之间排序,任务顺序应该是2,1,3;然后当2执行完之后,1和3依然未执行完;这个时候4正好执行完。于是就插队到任务中。最终得到2,4,1,3的结果。

因此,我们可以说:在生产环境中,这个顺序是不可控的,除非你把线程设置为1;


CompletionService相关面试题

如何使用CompletionService处理一组任务并获取结果?
比较ExecutorService和CompletionService,它们有什么相同之处和不同之处?
在何种情况下,你会选择使用CompletionService而不是ExecutorService?
解释CompletionService是如何保证按任务完成顺序获取结果的
当一个任务被提交到CompletionService后,它的生命周期是怎样的?在任务执行过程中,CompletionService内部都发生了什么?
在使用CompletionService处理任务时,如果某个任务执行异常,应该如何处理?
如果我想取消CompletionService中的所有任务,应该如何做?
谈谈你对Java中的Executor,ExecutorService,CompletionService和Future之间关系的理解

看完上面的文章,你可以试着来回答了吗?


参考文献

  1. Java并发编程小册总结让我们一起回顾今天所学。首先,我引导你使用了CompletionService和ExecutorService来实现了先前复杂的需求。相较于CompletableFuture,它们可能显得更为传统,但也更易理解。然后,我们一起探索了CompletionService的存在意义。我们试图解答,既然ExecutorService已经足够应对需求,为什么还要有CompletionService这样的设计。为了揭示这个疑惑,我们深入到源码中,同时也纠正了一个错误观点,以帮助你对CompletionService有更深刻的理解。最后,我们通过面试题形式,来巩固和复习我们所学的知识。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 引言
  • 使用CompletionService 解决问题
  • 基于上述代码抽取CompletionService
  • 使用ExecutorService 实现需求
  • 提交先后顺序 VS 任务完成快慢顺序
  • CompletionService 的适用场景
    • 执行一组任务并处理结果
    • CompletionService源码分析
      • 提交到那里去?为什么可以在多线程之间共享?
        • 快速获取是怎么做到的?
        • 第一个被消费到的任务一定是最快的吗?
        • CompletionService相关面试题
        • 参考文献
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档