前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Sklearn 的 10 个小众宝藏级方法!

Sklearn 的 10 个小众宝藏级方法!

作者头像
Python数据科学
发布2023-11-14 19:03:44
2271
发布2023-11-14 19:03:44
举报
文章被收录于专栏:Python数据科学Python数据科学

大家好,我是东哥。

本次给大家介绍10个Sklearn方法,比较小众但非常好用。

1️.FunctionTransformer

虽然Sklearn中有很多内置的预处理操作可以放进pipeline管道,但很多时候并不能满足我们的需求。

如果是比较简单并且通过一个函数可以实现需求的情况,我们可以将函数通过FunctionTransformer进行包装生成可与Sklearn兼容的转换器,然后装进pipeline。

代码语言:javascript
复制
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import FunctionTransformer

def reduce_memory(X: pd.DataFrame, y=None):
    """将数值型列的类型转换为float32类型,以减少内存占用
    @公众号:Python数据科学
    """

    num_cols = X.select_dtypes(incluce=np.number).columns
    for col in num_cols:
        X[col] = X.astype("float32")

    return X, y

ReduceMemoryTransformer = FunctionTransformer(reduce_memory)

# 装进一个pipeline
>>> make_pipeline(SimpleImputer(), ReduceMemoryTransformer)

Pipeline(steps=[('simpleimputer', SimpleImputer()),
                ('functiontransformer', ReduceMemoryTransformer()])

2.自定义transformers

但有更复杂需求的时候,可能一个简单函数也是无法完成功能实现的,这时就需要自己实实在在地创建一个转换器了。

比如,数据清洗中比较常见的操作缩放特征变量并使其呈正态分布。通常我们会使用对数变换器如PowerTransformernp.log,但默认的方法会有一点问题,即如果某个特征包含零值,那么底层的对数函数无法处理会提出报错。

因此,一般的应对方法是将特征向量加上1,然后再执行转换,以避免报错。如果想要还原原始向量,直接调用指数函数然后再减去1,就可以了。非常的丝滑。

当然,这个操作并未内置于Sklearn中,并且也不是一个简单函数能搞定的。下面看看如何自定义一个转换器解决这个问题。

代码语言:javascript
复制
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.preprocessing import PowerTransformer

class CustomLogTransformer(BaseEstimator, TransformerMixin):
    def __init__(self):
        self._estimator = PowerTransformer()  # 初始化一个转换器

    def fit(self, X, y=None):
        X_copy = np.copy(X) + 1  # 防止零值出现报错,进行加一操作
        self._estimator.fit(X_copy)

        return self

    def transform(self, X):
        X_copy = np.copy(X) + 1

        return self._estimator.transform(X_copy)  # 执行转换

    def inverse_transform(self, X):
        X_reversed = self._estimator.inverse_transform(np.copy(X))

        return X_reversed - 1  # 指数函数后减一

上面创建了一个类,继承了BaseEstimator并使其TransformerMixin能够插入pipeline管道的类。

3.TransformedTargetRegressor

有些时候,不仅仅是特征X需要处理,目标变量y也需要预处理操作。一个典型的场景就是我们上面提到的缩放数据使其呈现正态分布。通常我们会在pipeline以外做额外的处理,但 Sklearn 有一个方法可以同时在管道中处理。

TransformedTargetRegressor是一个专门针对regressor回归器进行转换的类,通过它可以同时将特征X和目标变量y在管道pipeline中做处理。比如下面的lgb回归的例子,它使用CustomLogTransformer对目标y进行对数缩放,然后拟合回归模型。

代码语言:javascript
复制
from sklearn.compose import TransformedTargetRegressor

reg_lgbm = lgbm.LGBMRegressor()

final_estimator = TransformedTargetRegressor(
    regressor=reg_lgbm, transformer=CustomLogTransformer()
)

final_estimator.fit(X_train, y_train)
TransformedTargetRegressor(regressor=LGBMRegressor(),
                           transformer=CustomLogTransformer())

如果转换器是一个函数如np.log,可以将其传递给func参数。

4.管道流程图

如果管道由多个步骤或子管道组成,代码上可能会比较混乱。Sklearn提供了估计器的HTML表示形式,让整理处理流程更直观清晰:

代码语言:javascript
复制
>>> giant_pipeline

Pipeline(steps=[('columntransformer',
                 ColumnTransformer(transformers=[('cat_pipe',
                                                  Pipeline(steps=[('impute',
                                                                   SimpleImputer(strategy='most_frequent')),
                                                                  ('oh',
                                                                   OneHotEncoder())]),
                                                  <sklearn.compose._column_transformer.make_column_selector object at 0x000001B6D8BD9310>),
                                                 ('num_pipe',
                                                  Pipeline(steps=[('impute',
                                                                   SimpleImputer(strategy='median')),
                                                                  ('transform',
                                                                   QuantileTransformer())]),
                                                  <sklearn.compose._column_transformer.make_column_selector object at 0x000001B6D8BD9160>)])),
                ('lgbmregressor',
                 LGBMRegressor(device_type='gpu', learning_rate=0.01,
                               n_estimators=10000))])
代码语言:javascript
复制
from sklearn import set_config

set_config(display="diagram")

>>> giant_pipeline

dispaly参数设置为diagram,就可以获得管道的HTML的交互式形式。

5.QuadraticDiscriminantAnalysis

QDA为QuadraticDiscriminantAnalysis的简称,是二次判别分析的意思。在Kaggle竞赛中,即使没有超参数调整,二次判别分析分类器也可以获得AUC0.965这样高的分数,超过了大多数树模型,包括XGBoost和LightGBM。

那为什么之前很少听说过该算法呢?因为它的使用有严格的限制条件,它要求训练特征严格的正态分布,这样QDA就可以轻松计算并拟合分布周围的椭球形状了。

QDA 的另一个优点是它的速度非常快,在百万行数据集上训练它只需要几秒钟。以下是QDA在Sklearn中的执行速度。

代码语言:javascript
复制
%%time

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

# Generate 1M samples and 100 features
X, y = make_classification(n_samples=1000000, n_features=100)
qda = QuadraticDiscriminantAnalysis().fit(X, y)

Wall time: 13.4 s

6.Voting Classifier/Regressor

在模型训练中,我们经常会遇到几个模型效果相似的情况,想要进一步提升效果,这时可以使用投票方法,是一种简单的模型集成方法。

投票方法效果提升原因在于概率论,简单来说就是少数服从多数。具体的就是,投票分类器会将多个分类器的多数票作为最终预测,而如果类别是概率或预测是连续的,则对预测进行平均。

Sklearn提供了两个方法VotingClassifierVotingRegressor,我们只需要传递一个分类器或回归器的列表,将它们组合起来就可以了。下面是VotingClassifier的示例。

代码语言:javascript
复制
from sklearn.ensemble import VotingClassifier

X, y = make_classification(n_samples=1000)

ensemble = VotingClassifier(
    estimators=[
        ("xgb", xgb.XGBClassifier(eval_metric="auc")),
        ("lgbm", lgbm.LGBMClassifier()),
        ("cb", cb.CatBoostClassifier(verbose=False)),
    ],
    voting="soft",
    # n_jobs=-1,
)

_ = ensemble.fit(X, y)

以上设置voting参数为soft,代表预测是概率。此外,还可以为不同的模型分配weights权重系数进行更精准的预测。

7.Stacking Classifier/Regressor

另一种比投票更强大的集成方法是stacking

原理可参考:模型融合方法详解

stacking背后的思想是,子模型应该尽可能多样化,因为不同的模型从不同的角度学习训练集的信息,可以覆盖整个信息空间。

换句话说,各种模型(如树、线性模型、表面拟合器、近邻模型、贝叶斯模型和高斯模型)最大化了训练潜力,它们的组合输出减少了偏差并防止了过拟合。

Kaggle竞赛中,stacking是一个提分的神器,很多获胜方案中都有提及。示例代码如下。

代码语言:javascript
复制
from sklearn.ensemble import StackingClassifier, StackingRegressor
from sklearn.linear_model import LogisticRegression

X, y = make_classification(n_samples=1000)

ensemble = StackingClassifier(
    estimators=[
        ("xgb", xgb.XGBClassifier(eval_metric="auc")),
        ("lgbm", lgbm.LGBMClassifier()),
        ("cb", cb.CatBoostClassifier(verbose=False)),
    ],
    final_estimator=LogisticRegression(),
    cv=5,
    passthrough=False
    # n_jobs=-1,
)

_ = ensemble.fit(X, y)

8.LocalOutlierFactor

异常值会使模型的目标函数产生偏差,可能导致过于乐观或过于悲观的结果。

对于小数据集来说,查找异常值不成问题。如果特征超过50-100个时,就需要一种快速准确的算法来检测高维异常值了。

对于具有数百个特征和数百万行的数据集,原始算法可能也需要运行几个小时。这时可以将降维算法与异常值检测方法结合起来,一个比较好的组合是UMAPLocalOutlierFactorLocalOutlierFactor是一种基于近邻的算法,旨在快速处理大型数据集。

代码语言:javascript
复制
%%time

import umap  # pip install umap
from sklearn.neighbors import LocalOutlierFactor

X, y = make_classification(n_samples=5000, n_classes=2, n_features=10)
X_reduced = umap.UMAP(n_components=2).fit_transform(X, y)

lof = LocalOutlierFactor()
labels = lof.fit_predict(X_reduced, y)

Wall time: 17.8 s

>>> np.where(labels == -1)
(array([ 119,  155,  303,  331,  333,  407,  418,  549,  599,  664,  795,
        3092, 3262, 3271, 3280, 3289, 3311, 3477, 3899, 3929, 3975, 4301,
        4358, 4442, 4522, 4561, 4621, 4631, 4989], dtype=int64),)

9️.QuantileTransformer

某些时候得到的模型结果分布非常不规则,可能通过对数转换器或缩放器都无法强制转换为正态分布,比如双峰、三峰、或者n峰的分布。

这种情况下可以使用QuantileTransformer,它使用分位数的统计指标实现中心化和缩放分布。

代码语言:javascript
复制
import pandas as pd
from sklearn.preprocessing import QuantileTransformer

qt = QuantileTransformer().fit(crazy_distributions)

crazy_feature_names = ["f18", "f31", "f61"]
crazy_distributions = pd.DataFrame(qt.transform(crazy_distributions), columns=crazy_feature_names)

fig, axes = plt.subplots(1, 3, figsize=(20, 6))

for ax, f_name in zip(axes.flatten(), crazy_feature_names):
    sns.kdeplot(crazy_distributions[f_name], ax=ax, color="#E50914")

PCA + tSNE/UMAP

这个一个降维的组合使用方法。因为PCA主成分分析对于高维度处理速度是比较快的,因此通常作为第一阶段的处理方法,比如使用PCA缩减到30-50的维度,然后再用其他算法如tSNEUMAP作为第二阶段的处理方法。

下面是 PCAtSNE 的组合:

代码语言:javascript
复制
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE

df = dt.fread("data/large.csv").to_pandas()

>>> df.shape
(1000000, 287)

X, y = df.drop("target", axis=1), df[["target"]].values.flatten()

%%time
manifold_pipe = make_pipeline(QuantileTransformer(), PCA(n_components=30), TSNE())

reduced_X = manifold_pipe.fit_transform(X, y)

------------------------------------------

Wall time: 4h 27min 46s

以上在100万行和约300个特征的数据集上,先通过PCA投影到前30个维度,然后再投影到二维,整个过程需要4.5小时,并且结果也不是很好。

代码语言:javascript
复制
>>> plt.scatter(reduced_X[:, 0], reduced_X[:, 1], c=y, s=0.05);

因此建议使用UMAP,它比tSNE快得多,并且可以更好地保留了数据的局部结构。

代码语言:javascript
复制
%%time
manifold_pipe = make_pipeline(QuantileTransformer(), PCA(n_components=30))

X_pca = manifold_pipe.fit_transform(X, y)
embedding = umap.UMAP(n_components=2).fit(X_pca, y)

Wall time: 14min 27s

>>> plt.scatter(embedding.embedding_[:, 0], embedding.embedding_[:, 1], c=y, s=0.05);

UMAP设法找到目标类别之间的明显区别,并且速度比tSNE快了20倍。

以上是全部内容,点个赞交个朋友。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2023-11-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Python数据科学 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1️.FunctionTransformer
  • 2.自定义transformers
  • 3.TransformedTargetRegressor
  • 4.管道流程图
  • 5.QuadraticDiscriminantAnalysis
  • 6.Voting Classifier/Regressor
  • 7.Stacking Classifier/Regressor
  • 8.LocalOutlierFactor
  • 9️.QuantileTransformer
  • PCA + tSNE/UMAP
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档