前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深入浅出Java中的数据结构:LinkedHashMap详解

深入浅出Java中的数据结构:LinkedHashMap详解

原创
作者头像
喵手
发布2023-11-17 11:53:26
6470
发布2023-11-17 11:53:26
举报
文章被收录于专栏:Java进阶实战

哈喽,各位小伙伴们,你们好呀,我是喵手。

  今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一个人虽可以走的更快,但一群人可以走的更远。

  我是一名后端开发爱好者,工作日常接触到最多的就是Java语言啦,所以我都尽量抽业余时间把自己所学到所会的,通过文章的形式进行输出,希望以这种方式帮助到更多的初学者或者想入门的小伙伴们,同时也能对自己的技术进行沉淀,加以复盘,查缺补漏。

小伙伴们在批阅的过程中,如果觉得文章不错,欢迎点赞、收藏、关注哦。三连即是对作者我写作道路上最好的鼓励与支持!

  如下是Java集合体系架构图,近期几期内容都是围绕该体系进行知识讲解,以便于同学们学习Java集合篇知识能够系统化而不零散。

在这里插入图片描述
在这里插入图片描述

前言

  在Java编程中,我们经常需要使用Map这个数据结构来存储键值对,而LinkedHashMap是Map的一个实现类,它在HashMap的基础上维护了一个双向链表,并且按照插入顺序或者访问顺序来迭代元素。LinkedHashMap既保证了HashMap的快速访问性能,又提供了顺序访问的能力,因此在某些场景下非常有用。

  本文将从源代码解析、应用场景案例、优缺点分析等多个方面对LinkedHashMap进行详细介绍,希望能帮助读者更好地理解LinkedHashMap的实现原理和使用方法。

摘要

  本文主要介绍了Java中的LinkedHashMap这个数据结构,并对其源代码进行了分析和解读。通过对LinkedHashMap的应用场景案例和优缺点分析,读者可以更好地理解LinkedHashMap的使用方法和使用场景。

LinkedHashMap

简介

  LinkedHashMap是Java中Map接口的一个实现类,它继承了HashMap,并且在HashMap的基础上维护了一个双向链表。LinkedHashMap的特点是可以按照插入顺序或者访问顺序来迭代元素。按照插入顺序迭代时,元素的顺序和插入的顺序相同;按照访问顺序迭代时,访问过的元素会被移动到链表的尾部,最近访问的元素会排在链表的前面。

LinkedHashMap的构造方法有以下几种:

代码语言:java
复制
public LinkedHashMap() {
    super();
}

public LinkedHashMap(int initialCapacity) {
    super(initialCapacity);
}

public LinkedHashMap(int initialCapacity, float loadFactor) {
    super(initialCapacity, loadFactor);
}

public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {
    super(initialCapacity, loadFactor);
    this.accessOrder = accessOrder;
}

  其中,accessOrder参数表示是否按照访问顺序来迭代元素。如果accessOrder为true,表示按照访问顺序来迭代元素;如果accessOrder为false,表示按照插入顺序来迭代元素。如果不指定accessOrder参数,则默认按照插入顺序来迭代元素。

  LinkedHashMap是线程不安全的,如果需要多线程并发访问,需要使用ConcurrentHashMap。

源代码解析

  LinkedHashMap的源代码比HashMap的源代码要复杂一些,因为它需要维护一个双向链表。下面我们将对LinkedHashMap的源代码进行分析,帮助读者更好地理解它的实现原理。

数据结构

  LinkedHashMap维护了一个双向链表,链表节点类型为Entry,继承了HashMap的Node类。Entry类的定义如下:

代码语言:java
复制
static class Entry<K,V> extends HashMap.Node<K,V> {
    Entry<K,V> before, after;
    Entry(int hash, K key, V value, Node<K,V> next) {
        super(hash, key, value, next);
    }
}

  其中,before和after分别表示当前节点的前驱节点和后继节点。

实现原理

  在LinkedHashMap中,每个Entry节点都维护了一个before和after指针,表示该节点的前驱节点和后继节点。因此,LinkedHashMap需要重写HashMap的put和remove方法,以保证在插入和删除元素时能够正确地更新链表。

put方法

  当调用put方法插入一个新元素时,LinkedHashMap会调用父类HashMap的putVal方法来实现插入。在putVal方法中,如果插入的元素已经存在,则会更新该元素的value值,并返回旧的value值;如果插入的元素不存在,则会创建一个新节点,并将该节点插入到hash桶中。

代码语言:java
复制
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e); // 更新该节点在链表中的位置
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict); // 更新链表
    return null;
}

  在调用父类HashMap的put方法插入新元素之后,LinkedHashMap会在afterNodeInsertion方法中更新链表。具体更新流程如下:

代码语言:java
复制
void afterNodeInsertion(boolean evict) { // possibly remove eldest
    Entry<K,V> eldest;
    if (evict && (eldest = eldest()) != null && removeEldestEntry(eldest)) {
        K key = eldest.key;
        removeNode(hash(key), key, null, false, true);
    }
    else if (size > capacity && removeEldestEntry(head)) {
        K key = head.key;
        removeNode(hash(key), key, null, false, true);
    }
}

  其中,removeEldestEntry方法用于判断是否需要删除最老的节点,该方法默认返回false,如果需要删除最老的节点,需要在继承LinkedHashMap的类中重写该方法。

在这里插入图片描述
在这里插入图片描述
代码语言:java
复制
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
    return false;
}

  如果需要删除最老的节点,则会调用removeNode方法来删除该节点。

代码语言:java
复制
final void removeNode(int hash, Object key, Object value,
                      boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            --size;
            afterNodeRemoval(node); // 更新链表
            return;
        }
    }
}

  在LinkedHashMap中,每个节点都维护了一个before和after指针,表示该节点的前驱节点和后继节点。因此,在插入和删除元素时,需要更新链表以保证顺序的正确性。

  在插入元素时,插入操作会调用父类HashMap的putVal方法,插入新节点;接着,在afterNodeInsertion方法中,会调用方法addEntry方法将新节点插入到链表的尾部。具体实现如下:

代码语言:java
复制
void afterNodeInsertion(boolean evict) { // possibly remove eldest
    Entry<K,V> eldest;
    if (evict && (eldest = eldest()) != null && removeEldestEntry(eldest)) {
        K key = eldest.key;
        removeNode(hash(key), key, null, false, true);
    }
    else if (size > capacity && removeEldestEntry(head)) {
        K key = head.key;
        removeNode(hash(key), key, null, false, true);
    }
    else {
        Entry<K,V> tail = tail();
        if (tail != null)
            linkNodeLast(tail, newNode);
        else
            // 链表为空,把新节点作为头节点
            head = newNode;
    }
}

  其中,如果evict为true且需要删除最老的节点,则会调用removeNode方法删除最老的节点;如果链表长度超出了capacity则会调用removeEldestEntry方法删除头部节点(即最老的节点)。如果不需要删除节点,则会调用linkNodeLast方法将新节点插入到链表的尾部。

  在删除节点时,调用removeNode方法删除节点后,会调用afterNodeRemoval方法来更新链表。如果需要删除的节点是头节点,则会将头节点更新为头节点的后继节点;否则,需要更新要删除节点的前驱节点的after指针和后继节点的before指针。具体实现如下:

代码语言:java
复制
void afterNodeRemoval(Node<K,V> e) { // unlink
    Entry<K,V> p = (Entry<K,V>)e, b = p.before, a = p.after;
    p.before = p.after = null;
    if (b == null)
        head = a;
    else
        b.after = a;
    if (a == null)
        tail = b;
    else
        a.before = b;
}
在这里插入图片描述
在这里插入图片描述

迭代器

  LinkedHashMap提供了按照插入顺序和访问顺序来迭代元素的能力。在按照插入顺序迭代时,只需要按照节点的插入顺序依次迭代即可;在按照访问顺序迭代时,需要按照节点的访问顺序来迭代,即最近访问的节点排在链表的前面。因此,LinkedHashMap需要重写HashMap的迭代器,实现按照访问顺序迭代元素的功能。

  在LinkedHashMap中,Entry节点继承了HashMap的Node类,并且新增了before和after指针,因此LinkedHashMap需要重写HashMap的迭代器,实现按照访问顺序来迭代元素。

  在创建迭代器时,需要判断是否按照访问顺序来迭代元素。如果按照访问顺序来迭代元素,则需要按照节点的访问顺序来排序,最近访问的节点排在链表的前面;否则,按照节点的插入顺序依次迭代。

具体实现如下:

代码语言:java
复制
Iterator<Entry<K,V>> newIterator() {
    return new LinkedHashIterator();
}

final class LinkedHashIterator extends HashMapIterator<Entry<K,V>> {
    public Entry<K,V> next() {
        return nextNode();
    }

    public void remove() {
        removeNode(lastReturned);
    }
}

final class EntryIterator extends LinkedHashIterator {
    public Entry<K,V> next() {
        return nextNode();
    }
}

final class KeyIterator extends LinkedHashIterator {
    public K next() {
        return nextNode().getKey();
    }
}

final class ValueIterator extends LinkedHashIterator {
    public V next() {
        return nextNode().value;
    }
}

final class LinkedKeyIterator extends KeyIterator {
    public K next() {
        return nextEntry().getKey();
    }
}

final class LinkedValueIterator extends ValueIterator {
    public V next() {
        return nextEntry().value;
    }
}

Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
    Entry<K,V> p = new Entry<K,V>(hash, key, value, e);
    linkNodeLast(p);
    return p;
}

void linkNodeLast(Entry<K,V> p) {
    Entry<K,V> last = tail;
    tail = p;
    if (last == null)
        head = p;
    else {
        p.before = last;
        last.after = p;
    }
}

  其中,newIterator方法用于创建迭代器对象,返回一个LinkedHashIterator对象;LinkedHashIterator继承了HashMap的迭代器类HashMapIterator,并且重写了next方法和remove方法,以实现按照访问顺序迭代元素的功能。

在这里插入图片描述
在这里插入图片描述

  在nextNode方法中,如果按照访问顺序来迭代元素,则会将最近访问的节点移动到链表的尾部(即末尾),以实现最近访问的节点排在链表的前面。

代码语言:java
复制
final Node<K,V> nextNode() {
    Entry<K,V> e = next;
    if (modCount != expectedModCount)
        throw new ConcurrentModificationException();
    if (e == null)
        throw new NoSuchElementException();

    // 按照访问顺序来迭代元素
    if (accessOrder)
        lastReturned = e;

    // 按照插入顺序迭代元素
    else
        lastReturned = next;

    next = e.after;
    return lastReturned;
}

  在removeNode方法中,如果需要删除的节点是最近访问的节点,则需要将指针last指向要删除节点的前驱节点,以便在下一次迭代时正确地返回要迭代的元素。

代码语言:java
复制
final void removeNode(Node<K,V> p) {
    Entry<K,V> e = (Entry<K,V>)p, b = e.before, a = e.after;
    if (b == null)
        head = a;
    else
        b.after = a;

    if (a == null)
        tail = b;
    else
        a.before = b;

    if (e == lastReturned)
        next = a;
    else
        expectedModCount++;

    modCount++;
    size--;
    e.value = null;
}

应用场景案例

  LinkedHashMap可以用于需要有序存储和访问的场景,比如LRU缓存、打印日志、调试信息存储等。下面以LRU缓存为例,介绍LinkedHashMap的应用。

  在实现LRU缓存时,可以使用LinkedHashMap来存储数据,最近访问的元素会被移动到链表的尾部,最老的元素位于链表的头部。每当缓存中的元素数量超过了一定的阈值时,就可以通过removeEldestEntry方法删除最老的元素,以保证缓存中的元素不超过阈值。

代码语言:java
复制
public class LRUCache<K, V> extends LinkedHashMap<K,V> {
    private int capacity;
    private static final float LOAD_FACTOR = 0.75f;

    public LRUCache(int capacity) {
        super(capacity, LOAD_FACTOR, true);
        this.capacity = capacity;
    }

    protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
        return size() > capacity;
    }
}

  在LRUCache的实现中,继承了LinkedHashMap,并重写了构造方法和removeEldestEntry方法。构造方法使用了accessOrder参数来指定按照访问顺序迭代元素,以便将最近访问的元素移动到链表的尾部。removeEldestEntry方法用于判断是否需要删除最老的元素,如果缓存中的元素数量超过了阈值,则需要删除最老的元素。

优缺点分析

LinkedHashMap相对于HashMap的优点在于:

  1. 可以按照插入顺序和访问顺序迭代元素。
  2. 通过维护一个双向链表,可以实现LRU缓存等有序存储和访问的场景。
  3. 在保证HashMap的快速访问性能的同时,提供了顺序访问的能力。

LinkedHashMap相对于HashMap的缺点在于:

  1. 需要维护一个双向链表,因此占用内存更多。
  2. 删除节点时需要更新前驱节点的after指针和后继节点的before指针,比HashMap多了一些操作,因此性能可能略差一些。
  3. LinkedHashMap是线程不安全的,如果需要多线程并发访问,需要使用ConcurrentHashMap。

测试用例

测试代码演示

  下面是一个使用LinkedHashMap的测试用例:

以下是一个简单的测试用例,演示如何使用 LinkedHashMap 来存储键值对,并打印出 LinkedHashMap 的值:

代码语言:java
复制
package com.example.javase.collection;

import java.util.LinkedHashMap;
import java.util.Map;

/**
 * @author ms
 * @date 2023/10/25 15:50
 */
public class LinkedHashMapTest {
    public static void main(String[] args) {

        // 创建一个 LinkedHashMap 对象
        Map<String, String> linkedHashMap = new LinkedHashMap<>();

        // 添加键值对到 LinkedHashMap
        linkedHashMap.put("key1", "value1");
        linkedHashMap.put("key2", "value2");
        linkedHashMap.put("key3", "value3");

        // 打印 LinkedHashMap 的键值对
        for (Map.Entry<String, String> entry : linkedHashMap.entrySet()) {
            System.out.println(entry.getKey() + " : " + entry.getValue());
        }
    }
}

预计输出结果:

代码语言:java
复制
key1 : value1
key2 : value2
key3 : value3

测试结果

  根据如上测试用例,本地测试结果如下,仅供参考,你们也可以自行修改测试用例或者添加更多的测试数据或测试方法,进行熟练学习以此加深理解。

在这里插入图片描述
在这里插入图片描述

测试代码分析

  根据如上测试用例,在此我给大家进行深入详细的解读一下测试代码,以便于更多的同学能够理解并加深印象。

  首先,导入了java.util.LinkedHashMapjava.util.Map 包。在 main 方法中创建了一个 LinkedHashMap 对象。

  然后,通过 put 方法向 LinkedHashMap 中添加了三组键值对。

  最后,通过 for-each 循环遍历 LinkedHashMap 中的键值对,并打印出来。

  LinkedHashMap 是基于哈希表和双向链表的数据结构,它可以保持插入顺序,因此可以按照插入顺序遍历。在插入新元素时,它将元素插入到链表的末尾,保持了元素的插入顺序。

  这个测试用例主要演示了 LinkedHashMap的基本用法,包括如何创建一个 LinkedHashMap 对象、如何添加元素、如何遍历元素等。

小结

  LinkedHashMap是Java中的一个数据结构,它在HashMap的基础上维护了一个双向链表,可以按照插入顺序或者访问顺序来迭代元素。LinkedHashMap在保证了HashMap的快速访问性能的同时,提供了顺序访问的能力,因此可以应用在需要有序存储和访问的场景,比如LRU缓存、打印日志、调试信息存储等。

  在使用LinkedHashMap时,需要注意它占用的内存较HashMap更多,删除节点时需要更新前驱节点的after指针和后继节点的before指针,性能可能略差一些。此外,LinkedHashMap不是线程安全的,如果需要多线程并发访问,需要使用ConcurrentHashMap。

总结

  本文详细介绍了Java中的LinkedHashMap这个数据结构,包括其构造方法、源代码解析、应用场景案例和优缺点分析等多个方面。LinkedHashMap继承了HashMap并在其基础上维护了一个双向链表,可以按照插入顺序或者访问顺序来迭代元素。LinkedHashMap可以应用在需要有序存储和访问的场景,比如LRU缓存、打印日志、调试信息存储等。

  需要注意的是,LinkedHashMap占用的内存较HashMap更多,删除节点时需要更新前驱节点的after指针和后继节点的before指针,性能可能略差一些。此外,LinkedHashMap不是线程安全的,如果需要多线程并发访问,需要使用ConcurrentHashMap。

... ...

文末

好啦,以上就是我这期的全部内容,如果有任何疑问,欢迎下方留言哦,咱们下期见。

... ...

学习不分先后,知识不分多少;事无巨细,当以虚心求教;三人行,必有我师焉!!!

wished for you successed !!!


⭐️若喜欢我,就请关注我叭。

⭐️若对您有用,就请点赞叭。

⭐️若有疑问,就请评论留言告诉我叭。

我正在参与2023腾讯技术创作特训营第三期有奖征文,组队打卡瓜分大奖!

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 摘要
  • LinkedHashMap
    • 简介
      • 源代码解析
        • 数据结构
        • 实现原理
        • 迭代器
      • 应用场景案例
        • 优缺点分析
          • 测试代码演示
          • 测试结果
          • 测试代码分析
      • 测试用例
      • 小结
      • 总结
      • 文末
      相关产品与服务
      腾讯云代码分析
      腾讯云代码分析(内部代号CodeDog)是集众多代码分析工具的云原生、分布式、高性能的代码综合分析跟踪管理平台,其主要功能是持续跟踪分析代码,观测项目代码质量,助力维护团队卓越代码文化。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档