前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >史上最全の图论圣经: 涵盖所有「存图方式」与「最短路算法」

史上最全の图论圣经: 涵盖所有「存图方式」与「最短路算法」

作者头像
宫水三叶的刷题日记
发布2023-11-17 16:11:50
3680
发布2023-11-17 16:11:50
举报
文章被收录于专栏:宫水三叶的刷题日记

题目描述

这是 LeetCode 上的「1334. 阈值距离内邻居最少的城市」,难度为「中等」

Tag : 「最短路」、「图」

n

个城市,按从

0

n-1

编号。

给你一个边数组 edges,其中

edges[i] = [from_{i}, to_{i}, weight_{i}]

代表

from_{i}

to_{i}

两个城市之间的双向加权边,距离阈值是一个整数 distanceThreshold

返回能通过某些路径到达其他城市数目最少、且路径距离最大为 distanceThreshold 的城市。如果有多个这样的城市,则返回编号最大的城市。

注意,连接城市

i

j

的路径的距离等于沿该路径的所有边的权重之和。

示例 1:

代码语言:javascript
复制
输入:n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4

输出:3

解释:城市分布图如上。
每个城市阈值距离 distanceThreshold = 4 内的邻居城市分别是:
城市 0 -> [城市 1, 城市 2] 
城市 1 -> [城市 0, 城市 2, 城市 3] 
城市 2 -> [城市 0, 城市 1, 城市 3] 
城市 3 -> [城市 1, 城市 2] 
城市 0 和 3 在阈值距离 4 以内都有 2 个邻居城市,但是我们必须返回城市 3,因为它的编号最大。

示例 2:

代码语言:javascript
复制
输入:n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2

输出:0

解释:城市分布图如上。 
每个城市阈值距离 distanceThreshold = 2 内的邻居城市分别是:
城市 0 -> [城市 1] 
城市 1 -> [城市 0, 城市 4] 
城市 2 -> [城市 3, 城市 4] 
城市 3 -> [城市 2, 城市 4]
城市 4 -> [城市 1, 城市 2, 城市 3] 
城市 0 在阈值距离 2 以内只有 1 个邻居城市。

提示:

2 <= n <= 100
1 <= edges.length <= \frac{n \times (n - 1)}{2}
edges[i].length = 3
0 <= from_{i} < to_{i} < n
1 <= weight_{i}, distanceThreshold <= 10^4
  • 所有
(from_{i}, to_{i})

都是不同的。

基本分析

若能预处理图中任意两点

i

j

的最短距离 dist,那么统计每个点

i

在图中有多少满足

dist[j] \leq distanceThreshold

的点

j

即为答案。

于是问题转换为:如何求解给定图中,任意两点的最短距离

存图

在学习最短路之前,我们先搞懂众多图论问题的前置 🧀 :存图。

为了方便,我们约定

n

为点数,

m

为边数。

根据点和边的数量级关系,可以将图分成如下两类:

  • 稠密图:边数较多,边数接近于点数的平方,即
m \approx n^2
  • 稀疏图:边数较少,边数接近于点数,即
m \approx n

同时,根据「稠密图」还是「稀疏图」,我们有如下几种存图方式:

1. 邻接矩阵(稠密图)

这是一种使用二维矩阵来进行存图的方式。

代码语言:javascript
复制
// w[a][b] = c 代表从 a 到 b 有权重为 c 的边
int[][] g = new int[N][N];

// 加边操作
void add(int a, int b, int c) {
    g[a][b] = c;
}
2. 邻接表(稀疏图)

邻接表又叫「链式前向星」,是另一种常见的存图方式,实现代码与「使用数组存储单链表」一致(头插法)。

代码语言:javascript
复制
int[] he = new int[N], e = new int[M], ne = new int[M], w = new int[M];

// 加边操作
void add(int a, int b, int c) {
    e[idx] = b;
    ne[idx] = he[a];
    w[idx] = c;
    he[a] = idx++;
}

首先 idx 是用来对边进行编号的,然后对存图用到的几个数组作简单解释:

  • he 数组:存储是某个节点所对应的边的集合(链表)的头结点;
  • e 数组:由于访问某一条边指向的节点;
  • ne 数组:由于是以链表的形式进行存边,该数组就是用于找到下一条边;
  • w 数组:用于记录某条边的权重为多少。

当我们想要遍历所有由 a 点发出的边时,可以使用如下方式:

代码语言:javascript
复制
for (int i = he[a]; i != -1; i = ne[i]) {
    int b = e[i], c = w[i]; // 存在由 a 指向 b 的边,权重为 c
}
3. 类

这是最简单,但使用频率最低的存图方式。

只有当我们需要确保某个操作复杂度为严格

O(m)

时,才会考虑使用。

具体的,建立一个类来记录有向边信息:

代码语言:javascript
复制
class Edge {
    // 代表从 a 到 b 有一条权重为 c 的边
    int a, b, c;
    Edge(int _a, int _b, int _c) {
        a = _a; b = _b; c = _c;
    }
}

随后,使用诸如 List 的容器,存起所有边对象。在需要遍历所有边时,对容器进行进行遍历:

代码语言:javascript
复制
List<Edge> es = new ArrayList<>();

...

for (Edge e : es) {
    ...
}

综上,第

3

种方式,往往是 OJ 给我们边信息的方式,我们自己几乎不会用这种方式建图。

实际运用中,熟练掌握「如何根据点和边的数量级关系,来决定使用邻接矩阵(稠密图)还是邻接表(稀疏图)」即可。

Floyd(邻接矩阵)

Floyd 算法作为「多源汇最短路」算法,对于本题尤其适合。

Floyd 算法基于「动态规划」,其原始三维状态定义为

dist[p][i][j]

,表示「所有从点

i

到点

j

,且允许经过点集

(1, ... , p)

的路径」中的最短距离。

状态转移方程:

dist[p][i][j] = \min(dist[p - 1][i][j], dist[p - 1][i][p] + dist[p - 1][p][j])
dist[p - 1][i][j]

代表从

i

j

但必然不经过点

p

的路径,

dist[p - 1][i][p] + dist[p - 1][p][j]

代表必然经过点

p

的路径,两者中取较小值更新

dist[p][i][j]

不难发现任意的

dist[p][X][Y]

依赖于

dist[p - 1][X][Y]

,可采用「滚动数组」的方式进行优化。

dist 声明为二维数组,

dist[i][j]

代表从点

i

到点

j

的最短距离,并采取 [枚举中转点 - 枚举起点 - 枚举终点] 三层循环的方式更新

dist[i][j]

如此一来,跑一遍 Floyd 算法便可得出任意两点的最短距离。

通过上述推导,不难发现,我们并没提及边权的正负问题,因此 Floyd 算法对边权的正负没有限制要求(可处理正负权边的图),且能利用 Floyd 算法可能够对图中负环进行判定。

Java 代码:

代码语言:javascript
复制
class Solution {
    public int findTheCity(int n, int[][] edges, int distanceThreshold) {
        int[][] g = new int[n][n];
        // 初始化邻接矩阵
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                g[i][j] = i == j ? 0 : 0x3f3f3f3f;
            }
        }
        // 存图
        for (int[] e : edges) {
            int a = e[0], b = e[1], c = e[2];
            g[a][b] = g[b][a] = Math.min(g[a][b], c);
        }
        // 最短路
        floyd(g);
        // 统计答案
        int ans = -1, cnt = n + 10;
        for (int i = 0; i < n; i++) {
            int cur = 0;
            for (int j = 0; j < n; j++) {
                if (i != j && g[i][j] <= distanceThreshold) cur++;
            }
            if (cur <= cnt) {
                cnt = cur; ans = i;
            }
        }
        return ans;
    }
    void floyd(int[][] g) {
        int n = g.length;
        // floyd 基本流程为三层循环: [枚举中转点 - 枚举起点 - 枚举终点] => 松弛操作  
        for (int p = 0; p < n; p++) {
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    g[i][j] = Math.min(g[i][j], g[i][p] + g[p][j]);
                }
            }
        }
    }
}

C++ 代码:

代码语言:javascript
复制
class Solution {
public:
    int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {
        vector<vector<int>> g(n, vector<int>(n, 0x3f3f3f3f));
        // 初始化邻接矩阵
        for (int i = 0; i < n; i++) g[i][i] = 0;
        // 存图
        for (const auto& e : edges) {
            int a = e[0], b = e[1], c = e[2];
            g[a][b] = g[b][a] = min(g[a][b], c);
        }
        // 最短路
        floyd(g);
        // 统计答案
        int ans = -1, cnt = n + 10;
        for (int i = 0; i < n; i++) {
            int cur = 0;
            for (int j = 0; j < n; j++) {
                if (i != j && g[i][j] <= distanceThreshold) cur++;
            }
            if (cur <= cnt) {
                cnt = cur; ans = i;
            }
        }
        return ans;
    }
    void floyd(vector<vector<int>>& g) {
        int n = g.size();
        // floyd 基本流程为三层循环: [枚举中转点 - 枚举起点 - 枚举终点] => 松弛操作  
        for (int p = 0; p < n; p++) {
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    g[i][j] = min(g[i][j], g[i][p] + g[p][j]);
                }
            }
        }
    }
};

Python 代码:

代码语言:javascript
复制
class Solution:
    def findTheCity(self, n: int, edges: List[List[int]], distanceThreshold: int) -> int:
        def floyd(g: List[List[int]]) -> None:
            n = len(g)
            # floyd 基本流程为三层循环: [枚举中转点 - 枚举起点 - 枚举终点] => 松弛操作
            for p in range(n):
                for i in range(n):
                    for j in range(n):
                        g[i][j] = min(g[i][j], g[i][p] + g[p][j])

        g = [[float('inf')] * n for _ in range(n)]
        # 初始化邻接矩阵
        for i in range(n):
            g[i][i] = 0
        # 存图
        for a, b, c in edges:
            g[a][b] = g[b][a] = min(g[a][b], c)
        # 最短路
        floyd(g)
        # 统计答案
        ans, cnt = -1, n + 10
        for i in range(n):
            cur = sum(1 for j in range(n) if i != j and g[i][j] <= distanceThreshold)
            if cur <= cnt:
                cnt, ans = cur, i
        return ans

TypeScript 代码:

代码语言:javascript
复制
function findTheCity(n: number, edges: number[][], distanceThreshold: number): number {
    const floyd = function (g: number[][]): void {
        const n = g.length;
        // floyd 基本流程为三层循环: [枚举中转点 - 枚举起点 - 枚举终点] => 松弛操作
        for (let p = 0; p < n; p++) {
            for (let i = 0; i < n; i++) {
                for (let j = 0; j < n; j++) {
                    g[i][j] = Math.min(g[i][j], g[i][p] + g[p][j]);
                }
            }
        }
    }

    const g = Array.from({ length: n }, () => Array(n).fill(0x3f3f3f3f));
    // 初始化邻接矩阵
    for (let i = 0; i < n; i++) g[i][i] = 0;
    // 存图
    for (const [a, b, c] of edges) g[a][b] = g[b][a] = Math.min(g[a][b], c);
    // 最短路
    floyd(g);
    // 统计答案
    let ans = -1, cnt = n + 10;
    for (let i = 0; i < n; i++) {
        let cur = 0;
        for (let j = 0; j < n; j++) {
            if (i !== j && g[i][j] <= distanceThreshold) cur++;
        }
        if (cur <= cnt) {
            cnt = cur; ans = i;
        }
    }
    return ans;
};
  • 时间复杂度:初始化邻接矩阵和建图复杂度为
O(n^2 + m)

floyd 算法复杂度为

O(n^3)

;统计答案复杂度为

O(n^2)

;整体复杂度为

O(n^3 + m)
  • 空间复杂度:
O(n^2)

朴素 Dijkstra(邻接矩阵)

最为经典的「单源最短路」算法,通常搭配「邻接矩阵」使用,应用在边数较多的“稠密图”上。

朴素 Dijkstra 算法基于「贪心」,通过维护一维的距离数组 dist 实现,

dist[i]

表示从源点出发到点

i

的最短距离。

朴素 Dijkstra 算法在每一次迭代中,都选择 dist 中值最小的点进行松弛操作,逐渐扩展最短路径范围。

Java 代码:

代码语言:javascript
复制
class Solution {
    public int findTheCity(int n, int[][] edges, int distanceThreshold) {
        int[][] g = new int[n][n];
        // 初始化邻接矩阵
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                g[i][j] = i == j ? 0 : 0x3f3f3f3f;
            }
        }
        // 存图
        for (int[] e : edges) {
            int a = e[0], b = e[1], c = e[2];
            g[a][b] = g[b][a] = Math.min(g[a][b], c);
        }
        int ans = -1, cnt = n + 10;
        for (int i = 0; i < n; i++) {
            // 单源最短路
            int[] dist = dijkstra(g, i);
            int cur = 0;
            for (int j = 0; j < n; j++) {
                if (i != j && dist[j] <= distanceThreshold) cur++;
            }
            if (cur <= cnt) {
                cnt = cur; ans = i;
            }
        }
        return ans;
    }
    int[] dijkstra(int[][] g, int x) {
        int n = g.length;
        // 起始先将所有的点标记为「未更新」和「距离为正无穷」
        boolean[] vis = new boolean[n];
        int[] dist = new int[n];
        Arrays.fill(dist, 0x3f3f3f3f);
        // 只有起点最短距离为 0
        dist[x] = 0;
        // 有多少个点就迭代多少次
        for (int k = 0; k < n; k++) {
            // 每次找到「最短距离最小」且「未被更新」的点 t
            int t = -1;
            for (int i = 0; i < n; i++) {
                if (!vis[i] && (t == -1 || dist[i] < dist[t])) t = i;
            }
            // 标记点 t 为已更新
            vis[t] = true;
            // 用点 t 的「最小距离」更新其他点
            for (int i = 0; i < n; i++) dist[i] = Math.min(dist[i], dist[t] + g[t][i]);
        }
        return dist;
    }
}

C++ 代码:

代码语言:javascript
复制
class Solution {
public:
    int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {
        vector<vector<int>> g(n, vector<int>(n, 0x3f3f3f3f));
        // 初始化邻接矩阵
        for (int i = 0; i < n; i++) g[i][i] = 0;
        // 存图
        for (const auto& e : edges) {
            int a = e[0], b = e[1], c = e[2];
            g[a][b] = g[b][a] = min(g[a][b], c);
        }
        int ans = -1, cnt = n + 10;
        for (int i = 0; i < n; i++) {
            // 单源最短路
            vector<int> dist = dijkstra(g, i);
            int cur = count_if(dist.begin(), dist.end(), [distanceThreshold](int d) { return d <= distanceThreshold; });
            if (cur <= cnt) {
                cnt = cur; ans = i;
            }
        }
        return ans;
    }
    vector<int> dijkstra(const vector<vector<int>>& g, int x) {
        int n = g.size();
        vector<bool> vis(n, false);
        vector<int> dist(n, 0x3f3f3f3f);
        // 只有起点最短距离为 0
        dist[x] = 0;
        // 有多少个点就迭代多少次
        for (int k = 0; k < n; k++) {
            // 每次找到「最短距离最小」且「未被更新」的点 t
            int t = -1;
            for (int i = 0; i < n; i++) {
                if (!vis[i] && (t == -1 || dist[i] < dist[t])) t = i;
            }
            // 标记点 t 为已更新
            vis[t] = true;
            // 用点 t 的「最小距离」更新其他点
            for (int i = 0; i < n; i++) dist[i] = min(dist[i], dist[t] + g[t][i]);
        }
        return dist;
    }
};

Python 代码:

代码语言:javascript
复制
class Solution:
    def findTheCity(self, n: int, edges: List[List[int]], distanceThreshold: int) -> int:
        def dijkstra(g, x):
            n = len(g)
            vis = [False] * n
            dist = [float('inf')] * n
            # 只有起点最短距离为 0
            dist[x] = 0
            # 有多少个点就迭代多少次
            for k in range(n):
                # 每次找到「最短距离最小」且「未被更新」的点 t
                t = min((i for i in range(n) if not vis[i]), key=lambda i: dist[i])
                # 标记点 t 为已更新
                vis[t] = True
                # 用点 t 的「最小距离」更新其他点
                for i in range(n):
                    dist[i] = min(dist[i], dist[t] + g[t][i])
            return dist

        g = [[float('inf')] * n for _ in range(n)]
        # 初始化邻接矩阵
        for i in range(n):
            g[i][i] = 0
        # 存图
        for a, b, c in edges:
            g[a][b] = g[b][a] = min(g[a][b], c)
        ans, cnt = -1, n + 10
        for i in range(n):
            # 单源最短路
            dist = dijkstra(g, i)
            cur = sum(1 for j in range(n) if i != j and dist[j] <= distanceThreshold)
            if cur <= cnt:
                cnt, ans = cur, i
        return ans

TypeScript 代码:

代码语言:javascript
复制
function findTheCity(n: number, edges: number[][], distanceThreshold: number): number {
    const dijkstra = function (g: number[][], x: number): number[]  {
        const n = g.length;
        const vis = Array(n).fill(false), dist = Array(n).fill(0x3f3f3f3f);
        // 只有起点最短距离为 0
        dist[x] = 0;
        // 有多少个点就迭代多少次
        for (let k = 0; k < n; k++) {
            // 每次找到「最短距离最小」且「未被更新」的点 t
            let t = -1;
            for (let i = 0; i < n; i++) {
                if (!vis[i] && (t === -1 || dist[i] < dist[t])) t = i;
            }
            // 标记点 t 为已更新
            vis[t] = true;
            // 用点 t 的「最小距离」更新其他点
            for (let i = 0; i < n; i++) dist[i] = Math.min(dist[i], dist[t] + g[t][i]);
        }
        return dist;
    }
    
    const g = Array.from({ length: n }, () => Array(n).fill(0x3f3f3f3f));
    // 初始化邻接矩阵
    for (let i = 0; i < n; i++) g[i][i] = 0;
    // 存图
    for (const [a, b, c] of edges) g[a][b] = g[b][a] = Math.min(g[a][b], c);
    let ans = -1, cnt = n + 10;
    for (let i = 0; i < n; i++) {
        // 单源最短路
        const dist = dijkstra(g, i);
        const cur = dist.filter(d => d <= distanceThreshold).length;
        if (cur <= cnt) {
            cnt = cur; ans = i;
        }
    }
    return ans;
};
  • 时间复杂度:初始化邻接矩阵和建图复杂度为
O(n^2 + m)

;统计答案时,共执行

n

次朴素 dijkstra 算法,朴素 dijkstra 复杂度为

O(n^2)

,总复杂度为

O(n^3)

。整体复杂度为

O(n^3 + m)
  • 空间复杂度:
O(n^2)

堆优化 Dijkstra(邻接表)

堆优化 Dijkstra 算法与朴素 Dijkstra 算法都是「单源最短路」算法。

堆优化 Dijkstra 算法通过数据结构「优先队列(堆)」来优化朴素 Dijkstra 中的“找 dist 中值最小的点”的过程。

相比于复杂度与边数无关的

O(n^2)

朴素 Dijkstra 算法,复杂度与边数相关的

O(m\log{n})

堆优化 Dijkstra 算法更适合边较少的“稀疏图”。

Java 代码:

代码语言:javascript
复制
class Solution {
    int N = 110, M = N * N, INF = 0x3f3f3f3f, idx, n;
    int[] he = new int[N], e = new int[M], ne = new int[M], w = new int[M];
    void add(int a, int b, int c) {
        e[idx] = b;
        ne[idx] = he[a];
        w[idx] = c;
        he[a] = idx++;
    }
    public int findTheCity(int _n, int[][] edges, int distanceThreshold) {
        n = _n;
        // 初始化链表头
        Arrays.fill(he, -1);
        // 存图
        for (int[] e : edges) {
            int a = e[0], b = e[1], c = e[2];
            add(a, b, c); add(b, a, c);
        }
        // 统计答案
        int ans = -1, cnt = n + 10;
        for (int i = 0; i < n; i++) {
            // 单源最短路
            int[] dist = dijkstra(i);
            int cur = 0;
            for (int j = 0; j < n; j++) {
                if (i != j && dist[j] <= distanceThreshold) cur++;
            }
            if (cur <= cnt) {
                cnt = cur; ans = i;
            }
        }
        return ans;
    }
    int[] dijkstra(int x) {
        // 起始先将所有的点标记为「未更新」和「距离为正无穷」
        int[] dist = new int[n];
        Arrays.fill(dist, 0x3f3f3f3f);
        boolean[] vis = new boolean[n];
        dist[x] = 0;
        // 使用「优先队列」存储所有可用于更新的点
        // 以 (点编号, 到起点的距离) 进行存储,优先弹出「最短距离」较小的点
        PriorityQueue<int[]> q = new PriorityQueue<>((a,b)->a[1]-b[1]);
        q.add(new int[]{x, 0});
        while (!q.isEmpty()) {
            // 每次从「优先队列」中弹出
            int[] poll = q.poll();
            int u = poll[0], step = poll[1];
            // 如果弹出的点被标记「已更新」,则跳过
            if (vis[u]) continue;
            // 标记该点「已更新」,并使用该点更新其他点的「最短距离」
            vis[u] = true;
            for (int i = he[u]; i != -1; i = ne[i]) {
                int j = e[i];
                if (dist[j] <= dist[u] + w[i]) continue;
                dist[j] = dist[u] + w[i];
                q.add(new int[]{j, dist[j]});
            }
        }
        return dist;
    }
}

C++ 代码:

代码语言:javascript
复制
class Solution {
public:
    static const int N = 110, M = N * N;
    int he[N], e[M], ne[M], w[M], idx, n, INF = 0x3f3f3f3f;
    void add(int a, int b, int c) {
        e[idx] = b;
        ne[idx] = he[a];
        w[idx] = c;
        he[a] = idx++;
    }
    int findTheCity(int _n, vector<vector<int>>& edges, int distanceThreshold) {
        n = _n;
        // 初始化链表头
        fill(he, he + n, -1);
        // 存图
        for (const auto& e : edges) {
            int a = e[0], b = e[1], c = e[2];
            add(a, b, c); add(b, a, c);
        }
        // 统计答案
        int ans = -1, cnt = n + 10;
        for (int i = 0; i < n; i++) {
            // 单源最短路
            vector<int> dist = dijkstra(i);
            int cur = count_if(dist.begin(), dist.end(), [distanceThreshold](int d) { return d <= distanceThreshold; });
            if (cur <= cnt) {
                cnt = cur; ans = i;
            }
        }
        return ans;
    }
    vector<int> dijkstra(int x) {
        // 起始先将所有的点标记为「未更新」和「距离为正无穷」
        vector<int> dist(n, INF);
        vector<bool> vis(n, false);
        dist[x] = 0;
        // 使用「优先队列」存储所有可用于更新的点
        // 以 (点编号, 到起点的距离) 进行存储,优先弹出「最短距离」较小的点
        priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q;
        q.push({0, x});
        while (!q.empty()) {
            // 每次从「优先队列」中弹出
            auto [step, u] = q.top();
            q.pop();
            // 如果弹出的点被标记「已更新」,则跳过
            if (vis[u]) continue;
            // 标记该点「已更新」,并使用该点更新其他点的「最短距离」
            vis[u] = true;
            for (int i = he[u]; i != -1; i = ne[i]) {
                int j = e[i];
                if (dist[j] <= dist[u] + w[i]) continue;
                dist[j] = dist[u] + w[i];
                q.push({dist[j], j});
            }
        }
        return dist;
    }
};

Python 代码:

代码语言:javascript
复制
import heapq

class Solution:
    def findTheCity(self, n: int, edges: List[List[int]], distanceThreshold: int) -> int:
        N, M, INF, idx = 110, 110 * 110, float('inf'), 0
        he, e, ne, w = [-1] * N, [0] * M, [0] * M, [0] * M

        def add(a, b, c):
            nonlocal idx
            e[idx] = b
            ne[idx] = he[a]
            w[idx] = c
            he[a] = idx
            idx += 1

        def dijkstra(x):
            # 起始先将所有的点标记为「未更新」和「距离为正无穷」
            dist = [float('inf')] * n
            vis = [False] * n
            dist[x] = 0
            # 使用「优先队列」存储所有可用于更新的点
            # 以 (点编号, 到起点的距离) 进行存储,优先弹出「最短距离」较小的点
            q = [(0, x)]
            heapq.heapify(q)
            while q:
                # 每次从「优先队列」中弹出
                step, u = heapq.heappop(q)
                # 如果弹出的点被标记「已更新」,则跳过
                if vis[u]: continue
                # 标记该点「已更新」,并使用该点更新其他点的「最短距离」
                vis[u] = True
                i = he[u]
                while i != -1:
                    j, c = e[i], w[i]
                    i = ne[i]
                    if dist[j] <= dist[u] + c: continue
                    dist[j] = dist[u] + c
                    heapq.heappush(q, (dist[j], j))
            return dist

        # 初始化链表头
        he = [-1] * N
        # 存图
        for a, b, c in edges:
            add(a, b, c)
            add(b, a, c)
        # 统计答案
        ans, cnt = -1, n + 10
        for i in range(n):
            # 单源最短路
            dist = dijkstra(i)
            cur = sum(1 for j in range(n) if i != j and dist[j] <= distanceThreshold)
            if cur <= cnt:
                cnt, ans = cur, i
        return ans
  • 时间复杂度:初始化邻接表和建图复杂度为
O(n + m)

;统计答案时,共执行

n

次堆优化 dijkstra 算法,堆优化 dijkstra 复杂度为

O(m\log{n})

,总复杂度为

O(nm\log{n})

。整体复杂度为

O(nm\log{n})
  • 空间复杂度:
O(n + m)

Bellman Ford(类)

虽然题目规定了不存在「负权边」,但我们仍然可以使用可以在「负权图中求最短路」的 Bellman Ford 进行求解,该算法也是「单源最短路」算法,复杂度为

O(n \times m)

通常为了确保

O(n \times m)

,可以单独建一个类代表边,将所有边存入集合中,在

n

次松弛操作中直接对边集合进行遍历。

由于本题边数量级为

n^2

,共对

n

个点执行 Bellman Ford 算法,因此整体会去到

O(n^4)

,有 TLE 风险。

Java 代码:

代码语言:javascript
复制
class Solution {
    int n;
    public int findTheCity(int _n, int[][] edges, int distanceThreshold) {
        n = _n;
        int ans = -1, cnt = n + 10;
        for (int i = 0; i < n; i++) {
            int[] dist = bf(edges, i);
            int cur = 0;
            for (int j = 0; j < n; j++) {
                if (i != j && dist[j] <= distanceThreshold) cur++;
            }
            if (cur <= cnt) {
                cnt = cur; ans = i;
            }
        }
        return ans;
    }
    int[] bf(int[][] edges, int x) {
        int[] dist = new int[n];
        // 起始先将所有的点标记为「距离为正无穷」, 只有起点最短距离为 0
        Arrays.fill(dist, 0x3f3f3f3f);
        dist[x] = 0;
        // 有多少个点就迭代多少次
        for (int k = 0; k < n; k++) {
            // 每次都使用上一次迭代的结果,执行松弛操作
            int[] prev = dist.clone();
            for (int[] e : edges) {
                int a = e[0], b = e[1], c = e[2];
                dist[b] = Math.min(dist[b], prev[a] + c);
                dist[a] = Math.min(dist[a], prev[b] + c);
            }
        }
        return dist;
    }
}

C++ 代码:

代码语言:javascript
复制
class Solution {
public:
    int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {
        int ans = -1, cnt = n + 10;
        for (int i = 0; i < n; i++) {
            vector<int> dist = bf(edges, i, n);
            int cur = 0;
            for (int j = 0; j < n; j++) {
                if (i != j && dist[j] <= distanceThreshold) cur++;
            }
            if (cur <= cnt) {
                cnt = cur; ans = i;
            }
        }
        return ans;
    }
    vector<int> bf(vector<vector<int>>& edges, int x, int n) {
        // 起始先将所有的点标记为「距离为正无穷」, 只有起点最短距离为 0
        vector<int> dist(n, 0x3f3f3f3f);
        dist[x] = 0;
        // 有多少个点就迭代多少次
        for (int k = 0; k < n; k++) {
            // 每次都使用上一次迭代的结果,执行松弛操作
            vector<int> prev = dist;
            for (const auto& e : edges) {
                int a = e[0], b = e[1], c = e[2];
                dist[b] = min(dist[b], prev[a] + c);
                dist[a] = min(dist[a], prev[b] + c);
            }
        }
        return dist;
    }
};

Python 代码:

代码语言:javascript
复制
class Solution:
    def findTheCity(self, n: int, edges: List[List[int]], distanceThreshold: int) -> int:
        def bf(edges: List[List[int]], x: int, n: int) -> List[int]:
            # 起始先将所有的点标记为「距离为正无穷」, 只有起点最短距离为 0
            dist = [float('inf')] * n
            dist[x] = 0
            # 有多少个点就迭代多少次
            for k in range(n):
                # 每次都使用上一次迭代的结果,执行松弛操作
                prev = dist.copy()
                for a, b, c in edges:
                    dist[b] = min(dist[b], prev[a] + c)
                    dist[a] = min(dist[a], prev[b] + c)
            return dist

        ans, cnt = -1, n + 10
        for i in range(n):
            dist = bf(edges, i, n)
            cur = sum(1 for j in range(n) if i != j and dist[j] <= distanceThreshold)
            if cur <= cnt:
                cnt, ans = cur, i
        return ans

TypeScript 代码:

代码语言:javascript
复制
function findTheCity(n: number, edges: number[][], distanceThreshold: number): number {
    const bf = function(x: number): number[] {
        // 起始先将所有的点标记为「距离为正无穷」, 只有起点最短距离为 0
        const dist = new Array(n).fill(0x3f3f3f3f);
        dist[x] = 0;
        // 有多少个点就迭代多少次
        for (let k = 0; k < n; k++) {
            // 每次都使用上一次迭代的结果,执行松弛操作
            const prev = dist.slice();
            for (const e of edges) {
                const a = e[0], b = e[1], c = e[2];
                dist[b] = Math.min(dist[b], prev[a] + c);
                dist[a] = Math.min(dist[a], prev[b] + c);
            }
        }
        return dist;
    }

    let ans = -1, cnt = n + 10;
    for (let i = 0; i < n; i++) {
        const dist = bf(i);
        let cur = 0;
        for (let j = 0; j < n; j++) {
            if (i !== j && dist[j] <= distanceThreshold) cur++;
        }
        if (cur <= cnt) {
            cnt = cur; ans = i;
        }
    }
    return ans;
};
  • 时间复杂度:统计答案时,共执行
n

Bellman Ford 算法, Bellman Ford 复杂度为

O(nm)

,总复杂度为

O(n^2 \times m)

。整体复杂度为

O(n^2 \times m)
  • 空间复杂度:
O(n + m)

SPFA(邻接表)

SPFA 也是一类能够处理「负权边」的单源最短路算法。

最坏情况下,复杂度为

O(n \times m)

,在特定情况下,其效率优于 Dijkstra 算法,近似

O(m)

基本执行流程如下:

  1. 用双端队列来维护待更新节点,初始将源点放入队列
  2. 每次从队列头中取出一个节点,对其所有相邻节点执行松弛操作
    1. 若某个相邻节点的最短距离发生了更新,且该节点不在队列中,将它加入队列中
  3. 重复以上步骤,直到队列为空

Java 代码:

代码语言:javascript
复制
class Solution {
    int N = 110, M = N * N, INF = 0x3f3f3f3f, idx, n;
    int[] he = new int[N], e = new int[M], ne = new int[M], w = new int[M];
    void add(int a, int b, int c) {
        e[idx] = b;
        ne[idx] = he[a];
        w[idx] = c;
        he[a] = idx++;
    }
    public int findTheCity(int _n, int[][] edges, int distanceThreshold) {
        n = _n;
        // 初始化链表头
        Arrays.fill(he, -1);
        // 存图
        for (int[] e : edges) {
            int a = e[0], b = e[1], c = e[2];
            add(a, b, c); add(b, a, c);
        }
        // 统计答案
        int ans = -1, cnt = n + 10;
        for (int i = 0; i < n; i++) {
            // 单源最短路
            int[] dist = spfa(i);
            int cur = 0;
            for (int j = 0; j < n; j++) {
                if (i != j && dist[j] <= distanceThreshold) cur++;
            }
            if (cur <= cnt) {
                cnt = cur; ans = i;
            }
        }
        return ans;
    }
    int[] spfa(int x) {
        int[] dist = new int[n];
        boolean[] vis = new boolean[n];
        // 起始先将所有的点标记为「未入队」和「距离为正无穷」
        Arrays.fill(dist, INF);
        // 只有起点最短距离为 0
        dist[x] = 0;
        // 使用「双端队列」存储,存储的是点编号
        Deque<Integer> d = new ArrayDeque<>();
        // 将「源点/起点」进行入队,并标记「已入队」
        d.addLast(x);
        vis[x] = true;
        while (!d.isEmpty()) {
            // 每次从「双端队列」中取出,并标记「未入队」
            int u = d.pollFirst();
            vis[u] = false;
            // 尝试使用该点,更新其他点的最短距离
            // 如果更新的点,本身「未入队」则加入队列中,并标记「已入队」
            for (int i = he[u]; i != -1; i = ne[i]) {
                int j = e[i];
                if (dist[j] <= dist[u] + w[i]) continue;
                dist[j] = dist[u] + w[i];
                if (vis[j]) continue;
                d.addLast(j);
                vis[j] = true;
            }
        }
        return dist;
    }
}

C++ 代码:

代码语言:javascript
复制
class Solution {
public:
    static const int N = 110, M = N * N;
    int he[N], e[M], ne[M], w[M], idx, n, INF = 0x3f3f3f3f;
    void add(int a, int b, int c) {
        e[idx] = b;
        ne[idx] = he[a];
        w[idx] = c;
        he[a] = idx++;
    }
    int findTheCity(int _n, vector<vector<int>>& edges, int distanceThreshold) {
        n = _n;
        fill(he, he + N, -1);
        for (const auto& e : edges) {
            int a = e[0], b = e[1], c = e[2];
            add(a, b, c); add(b, a, c);
        }
        int ans = -1, cnt = n + 10;
        for (int i = 0; i < n; i++) {
            vector<int> dist = spfa(i);
            int cur = count_if(dist.begin(), dist.end(), [&](int d) { return d != INF && d <= distanceThreshold; });
            if (cur <= cnt) {
                cnt = cur; ans = i;
            }
        }
        return ans;
    }
    vector<int> spfa(int x) {
        // 起始先将所有的点标记为「未入队」和「距离为正无穷」
        vector<int> dist(n, INF);
        vector<bool> vis(n, false);
        // 只有起点最短距离为 0
        dist[x] = 0;
        // 使用「双端队列」存储,存储的是点编号
        deque<int> d;
        // 将「源点/起点」进行入队,并标记「已入队」
        d.push_back(x);
        vis[x] = true;
        while (!d.empty()) {
            // 每次从「双端队列」中取出,并标记「未入队」
            int u = d.front();
            d.pop_front();
            vis[u] = false;
            // 尝试使用该点,更新其他点的最短距离
            // 如果更新的点,本身「未入队」则加入队列中,并标记「已入队」
            for (int i = he[u]; i != -1; i = ne[i]) {
                int j = e[i];
                if (dist[j] <= dist[u] + w[i]) continue;
                dist[j] = dist[u] + w[i];
                if (vis[j]) continue;
                d.push_back(j);
                vis[j] = true;
            }
        }
        return dist;
    }
};

Python 代码:

代码语言:javascript
复制
class Solution:
    def findTheCity(self, n: int, edges: List[List[int]], distanceThreshold: int) -> int:
        m, INF, idx = n * n, 0x3f3f3f3f, 0
        he, e, ne, w = [-1] * n, [0] * m, [0] * m, [0] * m

        def add(a: int, b: int, c: int):
            nonlocal idx
            e[idx] = b
            ne[idx] = he[a]
            w[idx] = c
            he[a] = idx
            idx += 1

        def spfa(x: int) -> List[int]:
            # 起始先将所有的点标记为「未入队」和「距离为正无穷」
            dist = [INF] * n
            vis = [False] * n
            # 只有起点最短距离为 0
            dist[x] = 0
            # 使用「双端队列」存储,存储的是点编号
            d = deque()
            # 将「源点/起点」进行入队,并标记「已入队」
            d.append(x)
            vis[x] = True
            while d:
                # 每次从「双端队列」中取出,并标记「未入队」
                u = d.popleft()
                vis[u] = False
                i = he[u]
                # 尝试使用该点,更新其他点的最短距离
                # 如果更新的点,本身「未入队」则加入队列中,并标记「已入队」
                while i != -1:
                    j, c = e[i], w[i]
                    i = ne[i]
                    if dist[j] <= dist[u] + c: continue
                    dist[j] = dist[u] + c
                    if vis[j]: continue
                    d.append(j)
                    vis[j] = True
            return dist

        for a, b, c in edges:
            add(a, b, c)
            add(b, a, c)

        ans, cnt = -1, n + 10
        for i in range(n):
            dist = spfa(i)
            cur = sum(1 for d in dist if d != INF and d <= distanceThreshold)
            if cur <= cnt:
                cnt, ans = cur, i
        return ans
  • 时间复杂度:统计答案时,共执行
n

spfa 算法, spfa 复杂度为

O(nm)

,总复杂度为

O(n^2 \times m)

。整体复杂度为

O(n^2 \times m)
  • 空间复杂度:
O(n + m)

最后

这是我们「刷穿 LeetCode」系列文章的第 No.1334 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。

在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。

为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode 。

在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-11-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 宫水三叶的刷题日记 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 题目描述
  • 基本分析
  • 存图
  • Floyd(邻接矩阵)
  • 朴素 Dijkstra(邻接矩阵)
  • 堆优化 Dijkstra(邻接表)
  • Bellman Ford(类)
  • SPFA(邻接表)
  • 最后
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档