前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【matlab】QR分解

【matlab】QR分解

作者头像
叶茂林
发布2023-12-05 14:33:05
4320
发布2023-12-05 14:33:05
举报
文章被收录于专栏:叶子的开发者社区

QR分解

给定一个m×n的矩阵A,其中m≥n,即矩阵A是高矩阵或者是方阵,QR分解将矩阵A分解为两个矩阵Q和R的乘积,其中矩阵Q是一个m×n的各列正交的矩阵,即QTQ=I,矩阵R是一个n×n的上三角矩阵,其对角线元素为正。

如果矩阵A是方阵,且各列线性无关,那么Q是一个正交矩阵,即QTQ=QQT=I。

QR分解有多种算法实现,包括Gram-Schmidt正交化方法、Householder变换方法和Givens旋转方法等,下面我们介绍Gram-Schmidt正交化方法和Householder变换方法,并在MATLAB平台上使用这两种算法来实现QR分解。

Gram-Schmidt算法

对于给定的n维向量a1,a2,……,an,Gram-Schmidt算法可以解决将其标准正交化的问题,即将一个线性无关的向量组转化为一个正交向量组,使得每个向量都与前面的向量正交(垂直),并且可以检验a1,a2,……,an是否是线性相关。

Gram-Schmidt算法的步骤如下:

  • 初始化n维向量q1,q2,……,qn,其中q1=a1/||a1||2。
  • 对于每个向量ai,i=2:n,进行正交化处理:qi= ai-( q1Tai)q1-…-( qi-1Tai)qi-1。
  • 如果qi=0,说明ai是a1,a2,……,ai-1的一个线性组合,可以结束算法了。
  • 否则将qi进行单位化,qi=qi/||qi||2。

如果步骤③没有结束,那么说明a1,a2,……,an是线性无关的,而且得到了一个正交向量组q1,q2,……,qn。

Gram-Schmidt算法实现的QR分解

对于给定矩阵A,其列向量线性无关,Gram-Schmidt算法实现的QR分解步骤如下:

  • 对列向量a1,a2,……,an按照Gram-Schmidt方法进行正交化。
  • 对上一步得到的正交化向量组进行单位化得到各列正交的矩阵Q。
  • 根据A=QR,QTQ=I→R=QTA,得到上三角矩阵R

MATLAB验证Gram-Schmidt算法实现QR分解稳定性

通过直观的方法来观察到Gram-Schmidt QR分解的正交性偏差,理论上通过Gram-Schmidt算法后可以得到列向量线性无关的各列正交的矩阵Q,即QTQ=I,我们可以直接计算QTQ,看看计算结果与单位矩阵I的差距

左图是QTQ的计算结果,有图是单位矩阵I,可见由于浮点数存储的舍入误差,随着k增大,积累的误差越大,矩阵Q逐渐失去正交性

代码语言:javascript
复制
clc,clear;
load MatrixA.mat;
[m,n]=size(A);
Q=zeros(m,n);
R=zeros(n,n);
%% Gram-Schmidt QR分解
for k=1:n
    R(1:k-1,k)=Q(:,1:k-1)'*A(:,k);  %求出R(1,K) - R(K-1,K)
    v=A(:,k)-Q(:,1:k-1)*R(1:k-1,k); %求出正交化向量q
    R(k,k)=norm(v);                 %求出R(K,K)
    Q(:,k)=v/R(k,k);                %单位化向量q
end
%% 正交性偏差
figure(1);
E = zeros(1,n);
for k=2:n
    max = 0;
    for i=1:k-1
        temp = abs(Q(:,i)' *  Q(:,k));
        if temp > max
            max = temp;
        end
    end
    E(1,k)=max;
end    
plot(E)
%% 比较QTQ和I
QTQ=Q'*Q;
figure(2);
for i=1:n
    for j=1:n
        scatter3(i,j,QTQ(i,j),'red');
        hold on;
    end
end
zlim([0,1]);
I=eye(n);
figure(3);
for i=1:n
    for j=1:n
        scatter3(i,j,I(i,j),'red');
        hold on;
    end
end
zlim([0,1]);

Householder变换

Householder变换是一种镜面反射变换,householder变换矩阵为H = I - 2wwT,如何理解这个变换矩阵呢,考虑向量w,那么有:

Hw = (I - 2wwT)w = w - 2w(wTw) = - w

这说明对于平行于w的向量,householder变换的作用是将其反向,再考虑与向量w垂直的向量v,即wTv=0,那么有:

Hv = (I - 2wwT)v = v - 2w(wTv) = v

这说明对于垂直于w的向量,householder变换的作用就是对其不起任何作用,那么对于一个普通的向量v来说,平行于w的分量被householder反向,垂直于w的分量不变,那么最终的效果就是将向量v作关于法向量为w的平面的镜像对称

基于Householder变换的QR分解

 因为H=H-1,所以A=H1H2,…,Hn-1R,即Q= H1H2,…,Hn-1,再根据A=QR,QTQ=I→R=QTA。

再来比较一下QTQ与单位矩阵I的差距,结果如图所示,左边的是计算出来的QTQ,右边是单位矩阵I

结果QTQ和I基本一样,可见相比其他分解方法,Householder算法能够减小舍入误差的累积,提高计算结果的稳定性。此外,该算法的时间复杂度较低,具备较高的计算效率。

代码语言:javascript
复制
clc,clear;
load MatrixA.mat;
[m,n]=size(A);
Q=zeros(m,n);
R=zeros(n,n);
%% Householder QR分解
[Q,R]=qr(A);    % matlab库函数就是用的Householder
%% 正交性偏差
figure(1);
E = zeros(1,n);
for k=2:n
    max = 0;
    for i=1:k-1
        temp = abs(Q(:,i)' *  Q(:,k));
        if temp > max
            max = temp;
        end
    end
    E(1,k)=max;
end    
plot(E)
%% 比较QTQ和I
QTQ=Q'*Q;
figure(2);
for i=1:n
    for j=1:n
        scatter3(i,j,QTQ(i,j),'red');
        hold on;
    end
end
zlim([0,1]);
I=eye(n);
figure(3);
for i=1:n
    for j=1:n
        scatter3(i,j,I(i,j),'red');
        hold on;
    end
end
zlim([0,1]);

判断矩阵是否可逆

判断矩阵是否可逆有以下几种方法:

  • 存在一个矩阵B,使得AB=BA=I,确实可逆。
  • 矩阵行列式不为0,可逆。
  • 矩阵满秩,可逆。
  • 线性方程组Ax=0只有0解,可逆。
  • 线性方程组Ax=b只有特解,可逆。

实际上如果一个方阵可以进行QR分解,那么这个方阵也是可逆的。

所以我们直接尝试对矩阵B进行QR分解,如果可以进行QR分解,那么矩阵B可逆。那么我们可以先假设矩阵B是可以进行QR分解,然后我们对矩阵B进行QR分解,显然矩阵B是可以进行QR分解的,这说明矩阵B是可逆的。

求逆

我们之前使用过高斯消元法来求解矩阵的逆,实际上也可以使用QR分解求矩阵的逆。由A = QR,QTQ = I,则A-1 = (QR)-1 = R-1Q-1 = R-1QT。

那么A-1就可以通过R-1QT得到,但是实际上我们并不需要计算R-1,让x= R-1QT,那么我们目标就是要得到x的结果,因为RR-1QT=QT,即Rx=QT,那么我们就需要求解这个线性方程组,由于R是上三角矩阵,所以直接回代就可以求出x,即求出R-1QT,即求出了A-1。

我们先用Gram-Schmidt算法实现的QR分解求解矩阵B的逆,将其与用MATLAB内置的求逆函数结果进行比较,结果如图所示,红色的圆圈是matlab内置的求逆函数计算出来的结果,绿色实心点是我们QR分解求出来的结果,如果二者重合说明计算结果相同。

可以看到基本上绿色的点都和红色的圆圈重合了,可见Gram-Schmidt算法QR分解求逆效果不错。

代码语言:javascript
复制
clc,clear;
load MatrixB.mat;
[m,n]=size(B);
Q=zeros(m,n);
R=zeros(n,n);
%% Gram-Schmidt QR分解
for k=1:n
    R(1:k-1,k)=Q(:,1:k-1)'*B(:,k);  %求出R(1,K) - R(K-1,K)
    v=B(:,k)-Q(:,1:k-1)*R(1:k-1,k); %求出正交化向量q
    R(k,k)=norm(v);                 %求出R(K,K)
    Q(:,k)=v/R(k,k);                %单位化向量q
end
%% 求逆
inverseQR=R\Q';
inverse=inv(B);
%% 画图比较
for i=0:n-1
    for j=1:n
        scatter(i*n+j,inverse(i+1,j),'red');
        hold on;
        scatter(i*n+j,inverseQR(i+1,j),'green','.');
        hold on;
    end
end

我们再用之前的高斯消元法求解矩阵B的逆,将其与用MATLAB内置的求逆函数结果进行比较,结果如图所示

可见高斯消元法求逆的结果也很好,基本上绿色的点都和红色的圆圈重合了。

代码语言:javascript
复制
clc,clear;
load MatrixB.mat;
b=eye(50);
B_b=[B,b];
[n,m]=size(B_b);
for i=1:n
    for j=m:-1:i
        B_b(i,j)=B_b(i,j)/B_b(i,i);
    end
    for j=i+1:n
        for k=m:-1:i
            B_b(j,k)=B_b(j,k)-B_b(j,i)*B_b(i,k);
        end
    end
%     fprintf('第%d次消元\n',i);
%     disp(rats(A_b));
end
for i=n-1:-1:1
    for j=i:-1:1
        for k=m:-1:n+1
            B_b(j,k)=B_b(j,k)-B_b(j,i+1)*B_b(i+1,k);
        end
        B_b(j,i+1)=0;
    end
%     fprintf('第%d次回代\n',n-i);
%     disp(rats(A_b));
end
gaussInverse=B_b(:,end-49:end);
inverse=inv(B);
%% 画图比较
for i=0:n-1
    for j=1:n
        scatter(i*n+j,inverse(i+1,j),'red');
        hold on;
        scatter(i*n+j,gaussInverse(i+1,j),'green','.');
        hold on;
    end
end

再用householder算法实现的QR分解求解矩阵B的逆,将其与用MATLAB内置的求逆函数结果进行比较,结果如图所示。

可见householder实现的QR分解求逆结果效果很好,基本上和matlab内置求逆函数结果相同,速度上也不慢。

代码语言:javascript
复制
clc,clear;
load MatrixB.mat;
[m,n]=size(B);
Q=zeros(m,n);
R=zeros(n,n);
%% Householder QR分解
[Q,R]=qr(B);    % matlab库函数就是用的Householder
%% 求逆
inverseQR=R\Q';
inverse=inv(B);
%% 画图比较
for i=0:n-1
    for j=1:n
        scatter(i*n+j,inverse(i+1,j),'red');
        hold on;
        scatter(i*n+j,inverseQR(i+1,j),'green','.');
        hold on;
    end
end
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-12-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档