得益于机器视觉的不断发展和成熟,越来越多的制造企业正在尝试将机器视觉检测技术引入产品缺陷检测。目前基于机器视觉的缺陷检测技术已经大量应用于纺织品、汽车零部件、半导体等产品的缺陷检测中,大大提升了制造业的质检效率。机器视觉在工业缺陷检测中的前景毋庸置疑,而工业制造领域的多样性、生产环境的复杂性、产品缺陷的非标性等因素,都给机器视觉在缺陷检测的实际应用带来了诸多挑战。
1)缺陷种类分布不均,可能存在着极其分布不均匀的现象;
2)在真实项目中,视觉成像弱,有些细微缺陷难以用肉眼辨别;
3)在真实生产环境中,良率较高,缺陷品很难收集;
4)缺陷产生跟某些工艺不稳定有关,导致缺陷存在未知的可能性;
基于深度学习的缺陷检测,绝大多数还是基于有监督学习(比如Yolov5、Yolov7、Faster RCNN等),半监督无监督急需突破,近几年在AI在工业界的应用接近理性发展;
摄像头镜头一共有四种缺陷,分别是白点、脏污、划伤、起翘等;["bai_dian","zang_wu","hua_shang","qi_pao"]
可以看出,绝大多数缺陷为白点
YOLOv5在整个神经网络分为4个部分的改进如下:
YOLOv5在兼顾mAP的同时,有着更短的检测时间,同时YOLOv5s的权重文件大小只有27MB,能够更好的适应嵌入式设备和移动设备,如下:
train: ./lens_defect/train.txt
val: ./lens_defect/val.txt
# number of classes
nc: 4
# class names
names: ["bai_dian","zang_wu","hua_shang","qi_pao"]
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 4 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
1)持续收集缺陷品;
2)缺陷多为小目标,设计适合小目标检测的网络;
3)数据增强;
在工业缺陷检测项目中,最终部署往往不是python部署,而是通过c++,C#,QT下进行调用,因此需要根据需求转换成tensort、Libtorch、onnxruntime等方式
未完待续 C++、C#如何 部署Yolov5、Yolov7。
详见:https://blog.csdn.net/m0_63774211/article/details/129584070
by CSDN AI小怪兽
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。