前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >中科院国产多语言大模型-YAYI2开源!家族AI应用场景全覆盖!

中科院国产多语言大模型-YAYI2开源!家族AI应用场景全覆盖!

作者头像
Python兴趣圈
发布2023-12-30 14:29:10
发布2023-12-30 14:29:10
57900
代码可运行
举报
文章被收录于专栏:翩翩白衣少年翩翩白衣少年
运行总次数:0
代码可运行

项目简介

YAYI 2 是中科闻歌研发的新一代开源大语言模型,中文名:雅意,采用了超过 2 万亿 Tokens 的高质量、多语言语料进行预训练。

开源地址:https://github.com/wenge-research/YAYI2

YAYI2-30B是其模型规模,是基于 Transformer 的大语言模型。拥有300亿参数规模,基于国产化算力支持,数据语料安全可控,模型架构全自主研发。在媒体宣传、舆情感知、政务治理、金融分析等场景具有强大的应用能力。具有语种覆盖多、垂直领域深、开源开放的特点。

中科闻歌 此次开源计划是希望促进中文预训练大模型开源社区的发展,并积极为此做出贡献,共同构建雅意大模型生态。

预训练数据

雅意2.0 在预训练阶段,采用了互联网数据来训练模型的语言能力,还添加了通用精选数据和领域数据,以增强模型的专业技能。

同时其还构建了一套全方位提升数据质量的数据处理流水线,包括标准化、启发式清洗、多级去重、毒性过滤四个模块。共收集 240TB 原始数据,预处理后仅剩 10.6TB 高质量数据。

分词器

  • • YAYI 2 采用 Byte-Pair Encoding(BPE)作为分词算法,使用 500GB 高质量多语种语料进行训练,包括汉语、英语、法语、俄语等十余种常用语言,词表大小为 81920。
  • • 对数字进行逐位拆分,以便进行数学相关推理;同时,在词表中手动添加了大量HTML标识符和常见标点符号,以提高分词的准确性。同时还预设了200个保留位,以便未来可能的应用。
  • • 采样了单条长度为 1万 Tokens 的数据形成评价数据集,涵盖中文、英文和一些常见小语种,并计算了模型的压缩比。
  • • 压缩比越低通常表示分词器具有更高效率的性能。

环境安装

1、克隆本仓库内容到本地环境

代码语言:javascript
代码运行次数:0
运行
复制
git clone https://github.com/wenge-research/YAYI2.git
cd YAYI2

2、创建 conda 虚拟环境

代码语言:javascript
代码运行次数:0
运行
复制
conda create --name yayi_inference_env python=3.8
conda activate yayi_inference_env

本项目需要 Python 3.8 或更高版本。

3、安装依赖

代码语言:javascript
代码运行次数:0
运行
复制
pip install transformers==4.33.1
pip install torch==2.0.1
pip install sentencepiece==0.1.99
pip install accelerate==0.25.0

4、模型推理

代码语言:javascript
代码运行次数:0
运行
复制
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("wenge-research/yayi2-30b", trust_remote_code=True)
>>> model = AutoModelForCausalLM.from_pretrained("wenge-research/yayi2-30b", device_map="auto", trust_remote_code=True)
>>> inputs = tokenizer('The winter in Beijing is', return_tensors='pt')
>>> inputs = inputs.to('cuda')
>>> pred = model.generate(
        **inputs, 
        max_new_tokens=256, 
        eos_token_id=tokenizer.eos_token_id, 
        do_sample=True,
        repetition_penalty=1.2,
        temperature=0.4, 
        top_k=100, 
        top_p=0.8
        )
>>> print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))

总结

雅意大模型 应用于多个垂直领域行业,如政务、舆情、财税、教育、中医药、金融等都有它的身影。同时也衍生出了一系列家族AI产品,比如企业级AI助手、数据标注平台、知识库AI助手、绘画创作平台、AI机器人等。

相信国产模型的生态开源开放,能对多语种、多领域、多行业的应用场景提供一大助力。

写到最后

感谢您的一路陪伴,用代码构建世界,一起探索充满未知且奇妙的魔幻旅程。如果您对Python编程技巧、好玩实用的开源项目、行业新知趣事和各类技术干货等充满兴趣,那么不要错过未来我为大家奉上的精彩内容!点击关注,让您的探索学习之旅更加丰富多彩,我们一同成长,一同前行!🚀💻📚

求一键三连:点赞、转发、在看

如果本文对您有帮助,也请帮忙点个 赞👍 + 在看 哈!❤️

在看你就赞赞我!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-12-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Python兴趣圈 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 项目简介
  • 预训练数据
  • 分词器
  • 环境安装
  • 总结
  • 写到最后
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档