前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习第11天:降维

机器学习第11天:降维

作者头像
Nowl
发布2024-01-18 19:56:17
1300
发布2024-01-18 19:56:17
举报
文章被收录于专栏:NowlNowl_AI

主要思想

介绍:当一个任务有很多特征时,我们找到最主要的,剔除不重要的

主流方法

1.投影

投影是指找到一个比当前维度低的维度面(或线),这个维度面或线离当前所有点的距离最小,然后将当前维度投射到小维度上

二维投射到一维
三维投射到二维

2.流形学习

当然,当数据集投影后在低纬度上有重叠的时候,我们应该考虑别的方法

我们来看看被称为瑞士卷数据集的三维图

经过两种降维数据的处理,我们得到下面两幅二维数据可视化图

我们可以看到,左边的数据 有很多重合的点,它使用的是投影技术,而右图就像将数据集一层层展开一样,这就是流形学习

我们接下来介绍三种常见的具体实现这些的降维方法

一、PCA主成分分析

介绍

pca主成分分析是一种投影降维方法

PCA主成分分析的思想就是:识别最靠近数据的超平面,然后将数据投影到上面

代码

这是一个最简单的示例,有一个两行三列的特征表x,我们将它降维到2个特征(n_components参数决定维度)

代码语言:javascript
复制
from sklearn.decomposition import PCA


x = [[1, 2, 3], [3, 4, 5]]

pca = PCA(n_components=2)
x2d = pca.fit_transform(x)

print(x)
print(x2d)

运行结果

二、三内核PCA

内核可以将实例隐式地映射到高维空间,这有利于模型寻找到数据的特征(维度过低往往可能欠拟合),其他的思想与PCA相同

具体代码

1.线性内核

特点: 线性核对原始特征空间进行线性映射,相当于没有映射,直接在原始空间上进行PCA。适用于数据在原始空间中是线性可分的情况。

代码语言:javascript
复制
import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from sklearn.decomposition import KernelPCA

# 生成瑞士卷数据集
X, color = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)

# 使用内核PCA将数据降为二维
kpca = KernelPCA(n_components=2, kernel='linear', gamma=0.1)
X_kpca = kpca.fit_transform(X)

# 可视化降维后的数据
plt.scatter(X_kpca[:, 0], X_kpca[:, 1], c=color, cmap='viridis', edgecolor='k')
plt.title('Kernel PCA of Swiss Roll Dataset')
plt.show()

2.rbf内核

特点: RBF核是一种常用的非线性核函数,它对数据进行非线性映射,将数据映射到高维空间,使得在高维空间中更容易分离。gamma参数控制了映射的“尺度”或“平滑度”,较小的gamma值导致较远的点对结果有较大的贡献,产生更平滑的映射,而较大的gamma值使得映射更加局部化。

代码语言:javascript
复制
import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from sklearn.decomposition import KernelPCA

# 生成瑞士卷数据集
X, color = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)

# 使用内核PCA将数据降为二维
kpca = KernelPCA(n_components=2, kernel='rbf', gamma=0.04)
X_kpca = kpca.fit_transform(X)

# 可视化降维后的数据
plt.scatter(X_kpca[:, 0], X_kpca[:, 1], c=color, cmap='viridis', edgecolor='k')
plt.title('Kernel PCA of Swiss Roll Dataset')
plt.show()

3.sigmoid内核

特点: Sigmoid核也是一种非线性核函数,它在数据上执行类似于双曲正切(tanh)的非线性映射。它对数据进行映射,使其更容易在高维空间中分离。gamma参数和coef0参数分别控制了核函数的尺度和偏置。

代码语言:javascript
复制
import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from sklearn.decomposition import KernelPCA

# 生成瑞士卷数据集
X, color = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)

# 使用内核PCA将数据降为二维
kpca = KernelPCA(n_components=2, kernel='sigmoid', gamma=0.04)
X_kpca = kpca.fit_transform(X)

# 可视化降维后的数据
plt.scatter(X_kpca[:, 0], X_kpca[:, 1], c=color, cmap='viridis', edgecolor='k')
plt.title('Kernel PCA of Swiss Roll Dataset')
plt.show()

三、LLE

局部线性嵌入(Locally Linear Embedding,LLE)是一种非线性降维算法,用于保留数据流形结构。

以下是使用LLE展开瑞士卷数据集的代码

代码语言:javascript
复制
import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from sklearn.manifold import LocallyLinearEmbedding

# 生成瑞士卷数据集
X, color = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)

# 使用LLE将数据降为二维
lle = LocallyLinearEmbedding(n_neighbors=12, n_components=2, random_state=42)
X_lle = lle.fit_transform(X)

# 可视化降维后的数据
plt.scatter(X_lle[:, 0], X_lle[:, 1], c=color, cmap='viridis', edgecolor='k')
plt.title('LLE of Swiss Roll Dataset')
plt.show()

结语

降维的方法不止这几种,重要的是我们要理解为什么要降维——减少不重要的特征,同时也能加快模型的训练速度

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-12-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 主要思想
  • 主流方法
    • 1.投影
      • 二维投射到一维
      • 三维投射到二维
    • 2.流形学习
    • 一、PCA主成分分析
      • 介绍
        • 代码
        • 二、三内核PCA
          • 具体代码
          • 三、LLE
          • 结语
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档