The underlying dataset for this daytime product is MODIS land surface temperature data (MOD11A2), which was gap-filled using the approach outlined in Weiss et al. (2014) to eliminate missing data caused by factors such as cloud cover. Gap-free outputs were then aggregated temporally and spatially to produce the monthly ≈5km product.
This dataset was produced by Harry Gibson and Daniel Weiss of the Malaria Atlas Project (Big Data Institute, University of Oxford, United Kingdom, [http://www.map.ox.ac.uk/] (http://www.map.ox.ac.uk/)).
该日间产品的基础数据集是MODIS陆地表面温度数据(MOD11A2),采用Weiss等人(2014)所述的方法填补缺口,以消除由云层等因素造成的数据缺失。然后将无间隙输出在时间和空间上进行汇总,以产生每月≈5公里的产品。
该数据集由Malaria Atlas项目的Harry Gibson和Daniel Weiss制作(英国牛津大学大数据研究所,[http://www.map.ox.ac.uk/] (http://www.map.ox.ac.uk/))。
Dataset Availability
2001-03-01T00:00:00 - 2015-06-01T00:00:00
Dataset Provider
Collection Snippet
ee.ImageCollection("Oxford/MAP/LST_Day_5km_Monthly")
Resolution
5000 meters
Bands Table
Name | Description | Min* | Max* | Units |
---|---|---|---|---|
Mean | The mean value of daytime land surface temperature for each aggregated pixel. | -74.03 | 63.87 | °C |
FilledProportion | A quality control band that indicates the percentage of each resulting pixel that was comprised of raw data (as opposed to gap-filled estimates). | 0 | 100 | % |
* = Values are estimated
引用:
Weiss, D.J., P.M. Atkinson, S. Bhatt, B. Mappin, S.I. Hay & P.W. Gething (2014) An effective approach for gap-filling continental scale remotely sensed time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 106-118.
代码:
var dataset = ee.ImageCollection('Oxford/MAP/LST_Day_5km_Monthly')
.filter(ee.Filter.date('2015-01-01', '2015-12-31'));
var daytimeLandSurfaceTemp = dataset.select('Mean');
var visParams = {
min: -20.0,
max: 50.0,
palette: [
'800080', '0000ab', '0000ff', '008000', '19ff2b', 'a8f7ff', 'ffff00',
'd6d600', 'ffa500', 'ff6b01', 'ff0000'
],
};
Map.setCenter(-88.6, 26.4, 1);
Map.addLayer(
daytimeLandSurfaceTemp, visParams, 'Daytime Land Surface Temperature');