前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Google Earth Engine(GEE)——sentinel-5p数据每三日SO2数据平均值

Google Earth Engine(GEE)——sentinel-5p数据每三日SO2数据平均值

作者头像
此星光明
发布2024-02-02 12:09:14
1750
发布2024-02-02 12:09:14
举报

问题:

我刚接触GEE,关于您发的Google Earth Engine——Sentinel-5P (Sentinel-5P OFFL SO2)二氧化硫的使用和下载(中国区域案例分析和下载)这篇文章,我还想请教您个问题。您分享了中国区域SO2展示和下载的代码,但是这个代码里是11天的数据取平均后,镶嵌在一张图上?不知道我理解的是不是对的。我现在如果要下载三个月的数据,每三天的数据平均镶嵌在一张tif图上,(比如21年6月到8月的数据,0601-0603的数据均值在一张图上,0604-0606的数据均值在另一张图上)。请问我应该怎么修改代码呢?

这个问题其实很简单:只要修改日期就好了,然后把握们统计的量编程平均值即可,然后导出下载,但是这个问题有一个很严重的问题就是,因为时间短,所以很多地方都会有空值,所以建议还是逐日的数据要根据研究区内是否会产生空值来决定采取什么样的方式进行修补。

这里代码:

代码语言:javascript
复制
// 分别定义两年的影响数据筛选
//用时间节点获取你想要的影像
var y2019 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-06-01","2019-06-3");
var y20191 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-06-04","2019-06-6");
var y20192 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-06-07","2019-06-9");
var y20193 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-06-10","2019-06-12");
var y20194 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-06-12","2019-06-15");
var y20195 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-06-16","2019-06-18");
var y20196 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-06-19","2019-06-20");
var y20196 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-06-19","2019-06-20");
var y20197 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-06-20","2019-06-22");
var y20198 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-06-23","2019-06-25");
var y20199 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-06-26","2019-06-28");
var y201910 = ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_SO2").filterDate("2019-06-29","2019-06-30");

//获取中国边界
var countries = ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017").filter(ee.Filter.eq("country_co", "CH"))

// 上色
var band_viz = {
  min: 0.0,
  max: 0.0005,
  palette: ['black', 'blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
//图层加载
Map.addLayer(y2019.mean().select("SO2_column_number_density").clip(countries),band_viz," 2019");
Map.addLayer(y20191.mean().select("SO2_column_number_density").clip(countries),band_viz," 20191");
Map.addLayer(y20192.mean().select("SO2_column_number_density").clip(countries),band_viz," 20192");
Map.addLayer(y20193.mean().select("SO2_column_number_density").clip(countries),band_viz," 20193");
Map.addLayer(y20194.mean().select("SO2_column_number_density").clip(countries),band_viz," 20194");
Map.addLayer(y20195.mean().select("SO2_column_number_density").clip(countries),band_viz," 20195");
Map.addLayer(y20196.mean().select("SO2_column_number_density").clip(countries),band_viz," 20196");
Map.addLayer(y20197.mean().select("SO2_column_number_density").clip(countries),band_viz," 20197");
Map.addLayer(y20198.mean().select("SO2_column_number_density").clip(countries),band_viz," 20198");
Map.addLayer(y20199.mean().select("SO2_column_number_density").clip(countries),band_viz," 20199");
Map.addLayer(y201910.mean().select("SO2_column_number_density").clip(countries),band_viz," 201910");

至于下载的化:

代码语言:javascript
复制
//分别利用已经定义的影像名称来下载即可
Export.image.toDrive({
//这里的mean就代表求均值
    image: y2019.mean().select("SO2_column_number_density").clip(countries),
    region:countries,
    scale:1000,
    description: "CHINA_so2_1Km",
    folder: 'CHINA_so2_1Km',
  });
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-02-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档