前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于MODIS数据的2000-2021年中国植被生物量数据集

基于MODIS数据的2000-2021年中国植被生物量数据集

作者头像
此星光明
发布2024-02-02 12:34:05
7050
发布2024-02-02 12:34:05
举报

简介

中国植被生物量分布图集由航天宏图实验室提供,利用MODIS地表反射率数据和植被指数(MCD43A4、MCD12Q1),与美国农业部FIA项目提供的地上生物量数据结合进行随机森林机器学习,训练得到各种植被类型的地上生物量估算模型。模型的总体预测精度为R2=0.72,RMSE=33.90 Mg/ha。将模型应用到中国地区,产生了覆盖全国的500米分辨率的年度植被地上生物量数据和相关图集。对森林火灾前后受灾区域的生物量分别进行估算和变化监测,能够有效评估火灾带来的植被生物量的损失,为火灾灾后评估提供有效的支撑。前言 – 人工智能教程

植被生物量指在特定时间段内,特定区域内所有植物的干物质重量总和。一般通过对植物的实地调查和采样来估算植被生物量,通常采用的方法包括割取样方、定位计数和生物量模型等。植被生物量是衡量生态系统生产力和碳循环的重要指标之一,对于生态环境保护和农林业生产等方面具有重要意义。

随机森林是一种常用的机器学习算法,可用于生物量估算。它通过构建多个决策树来实现生物量估算,并通过随机抽样和特征选择来提高模型的预测精度。

具体地,随机森林生物量估算的过程包括以下步骤:

  1. 数据采集:收集目标区域内的植被生物量数据和环境因素数据,如土壤类型、高程、水文因素等。
  2. 数据预处理:对数据进行清洗、缺失值填充、数据转化和标准化等处理,以便于后续模型的训练和预测。
  3. 创建随机森林模型:利用随机森林算法构建一个包含多个决策树的模型。每个决策树都基于随机抽样的数据和随机选择的特征进行训练,从而减少模型的方差和过拟合的风险。
  4. 模型训练和评估:使用训练集对模型进行训练,并使用独立的测试集对模型进行评估,以确定模型的预测精度和稳定性。
  5. 模型应用:将训练好的随机森林模型应用于目标区域的生物量估算中,通过输入环境因素数据,预测目标区域内的植被生物量。

需要注意的是,在进行随机森林生物量估算时,选择合适的特征和样本对提高预测精度非常重要。此外,为保证随机森林模型的预测精度和可靠性,还需要采集足够的高质量数据,并进行精细的数据预处理工作。

数据集ID:

EMDO/CHINA_AGB

时间范围: 2001年-2020年

范围: 全国

来源: 航天宏图

复制代码段:

var images = pie.ImageCollection("EMDO/CHINA_AGB")

名称

类型

空间分辨率(m)

值域范围

无效值

描述信息

B1

Float32

500

0~2000

-999

年度植被地上生物量数据分布。

date

string

影像日期

代码:

代码语言:javascript
复制
 * @File    :   中国植被生物量分布图集
 * @Desc    :   加载中国植被生物量分布图集
 */

// 加载中国植被生物量分布影像
var img = pie.ImageCollection("EMDO/CHINA_AGB")
             .first()
             .select("B1")
print("images:",img);

// 设置图层显示参数并加载
var visParam = {
    min: 0,
    max: 200,
    palette:'00007F,002AFF,00D4FF,7FFF7F,FFD400,FF2A00,7F0000',
};
Map.addLayer(img,visParam,"img")
Map.centerObject(img,2)
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-02-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 简介
  • 数据集ID:
  • 代码:
相关产品与服务
腾讯云服务器利旧
云服务器(Cloud Virtual Machine,CVM)提供安全可靠的弹性计算服务。 您可以实时扩展或缩减计算资源,适应变化的业务需求,并只需按实际使用的资源计费。使用 CVM 可以极大降低您的软硬件采购成本,简化 IT 运维工作。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档