前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Google Earth Engine(GEE)——LandScan人口数据集

Google Earth Engine(GEE)——LandScan人口数据集

作者头像
此星光明
发布2024-02-02 14:00:09
3320
发布2024-02-02 14:00:09
举报

LandScan人口数据 LandScan计划于1997年在橡树岭国家实验室(ORNL)启动,以满足为后果评估改进人口估计的需要。例如,全球范围内的自然和人为灾害使大量的人口处于危险之中,而且往往没有什么预先警告。开发高分辨的估计值是至关重要的,这样他们就可以对多个地理范围内的事件进行评估。自1998年以来,这一直是一个年度产品。

在为LandScan Global开发的建模方法的基础上,利用美国更高质量的数据,我们在2004年的LandScan USA的第一个版本中提高了空间和时间分辨率。创建LandScan USA的目的是为了捕捉人口的昼夜变化,这对各种分析和行动(包括应急准备和响应)至关重要。2016年,最初的LandScan USA模型被重新设计,以纳入地理空间技术的进步、机器学习方法和新的输入数据源。从那时起,我们每年都对基础模型进行改进,并每年发布一个新版本的数据集。

在LandScan USA首次启动的时候,ORNL也在机器学习和计算机视觉方面进行了开拓性的工作,特别是为了识别高空图像中明显的人为信号。这项工作最终实现了从高分辨率图像中快速、大规模地检测人类住区,并成为早期开发美国以外地区改进的分辨率人口分布的努力的基础,被称为Landscan HD。LandScan HD模型采用了多模式数据融合、空间数据科学、大数据资源和卫星图像利用的混合物。第一个国家尺度的LandScan HD数据集创建于2014年,此后不断有新的国家尺度数据集被开发出来。

免责声明:数据集的全部或部分描述是由作者或其作品提供的。

论文引用:

Sims, K., Reith, A., Bright, E., McKee, J., & Rose, A. (2022). LandScan Global 2021 [Data set]. Oak Ridge National Laboratory. https://doi.org/10. 48690/1527702

Weber, E., Moehl, J., Weston, S., Rose, A., Brelsford, C., & Hauser, T. (2022). LandScan USA 2021 [Data set]. Oak Ridge National Laboratory. https:// doi.org/10.48690/1527701

GEE 中的代码连接:

Earth Engine Snippet: LANDSCAN GLOBAL

代码语言:javascript
复制
var landscan_global = ee.ImageCollection("projects/sat-io/open-datasets/ORNL/LANDSCAN_GLOBAL");
var popcount_intervals =
'<RasterSymbolizer>' +
' <ColorMap type="intervals" extended="false" >' +
    '<ColorMapEntry color="#CCCCCC" quantity="0" label="No Data"/>' +
    '<ColorMapEntry color="#FFFFBE" quantity="5" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FEFF73" quantity="25" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FEFF2C" quantity="50" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FFAA27" quantity="100" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FF6625" quantity="500" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FF0023" quantity="2500" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#CC001A" quantity="5000" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#730009" quantity="185000" label="Population Count (Estimate)"/>' +
  '</ColorMap>' +
'</RasterSymbolizer>';

// Define a dictionary which will be used to make legend and visualize image on map
var dict = {
  "names": [
    "0",
    "1-5",
    "6-25",
    "26-50",
    "51-100",
    "101-500",
    "501-2500",
    "2501-5000",
    "5001-185000"
  ],
  "colors": [
    "#CCCCCC",
    "#FFFFBE",
    "#FEFF73",
    "#FEFF2C",
    "#FFAA27",
    "#FF6625",
    "#FF0023",
    "#CC001A",
    "#730009"
  ]};
  
  // Create a panel to hold the legend widget
var legend = ui.Panel({
  style: {
    position: 'bottom-left',
    padding: '8px 15px'
  }
});

// Function to generate the legend
function addCategoricalLegend(panel, dict, title) {
  
  // Create and add the legend title.
  var legendTitle = ui.Label({
    value: title,
    style: {
      fontWeight: 'bold',
      fontSize: '18px',
      margin: '0 0 4px 0',
      padding: '0'
    }
  });
  panel.add(legendTitle);
  
  var loading = ui.Label('Loading legend...', {margin: '2px 0 4px 0'});
  panel.add(loading);
  
  // Creates and styles 1 row of the legend.
  var makeRow = function(color, name) {
    // Create the label that is actually the colored box.
    var colorBox = ui.Label({
      style: {
        backgroundColor: color,
        // Use padding to give the box height and width.
        padding: '8px',
        margin: '0 0 4px 0'
      }
    });
  
    // Create the label filled with the description text.
    var description = ui.Label({
      value: name,
      style: {margin: '0 0 4px 6px'}
    });
  
    return ui.Panel({
      widgets: [colorBox, description],
      layout: ui.Panel.Layout.Flow('horizontal')
    });
  };
  
  // Get the list of palette colors and class names from the image.
  var palette = dict['colors'];
  var names = dict['names'];
  loading.style().set('shown', false);
  
  for (var i = 0; i < names.length; i++) {
    panel.add(makeRow(palette[i], names[i]));
  }
  
  Map.add(panel);
}

addCategoricalLegend(legend, dict, 'Population Count(estimate)');

Map.addLayer(landscan_global.sort('system:time_start').first().sldStyle(popcount_intervals), {}, 'Population Count Estimate 2000');
Map.addLayer(landscan_global.sort('system:time_start',false).first().sldStyle(popcount_intervals), {}, 'Population Count Estimate 2021');

Sample code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:population-socioeconomics/LANDSCAN-GLOBAL

Earth Engine Snippet: LANDSCAN USA

代码语言:javascript
复制
var landscan_usa_night = ee.ImageCollection("projects/sat-io/open-datasets/ORNL/LANDSCAN_USA_NIGHT");
var landscan_usa_day = ee.ImageCollection("projects/sat-io/open-datasets/ORNL/LANDSCAN_USA_DAY");

var popcount_intervals =
'<RasterSymbolizer>' +
' <ColorMap type="intervals" extended="false" >' +
    '<ColorMapEntry color="#CCCCCC" quantity="0" label="No Data"/>' +
    '<ColorMapEntry color="#FFFFBE" quantity="5" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FEFF73" quantity="25" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FEFF2C" quantity="50" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FFAA27" quantity="100" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FF6625" quantity="500" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FF0023" quantity="2500" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#CC001A" quantity="5000" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#730009" quantity="185000" label="Population Count (Estimate)"/>' +
  '</ColorMap>' +
'</RasterSymbolizer>';

// Define a dictionary which will be used to make legend and visualize image on map
var dict = {
  "names": [
    "0",
    "1-5",
    "6-25",
    "26-50",
    "51-100",
    "101-500",
    "501-2500",
    "2501-5000",
    "5001-185000"
  ],
  "colors": [
    "#CCCCCC",
    "#FFFFBE",
    "#FEFF73",
    "#FEFF2C",
    "#FFAA27",
    "#FF6625",
    "#FF0023",
    "#CC001A",
    "#730009"
  ]};
  
  // Create a panel to hold the legend widget
var legend = ui.Panel({
  style: {
    position: 'bottom-left',
    padding: '8px 15px'
  }
});

// Function to generate the legend
function addCategoricalLegend(panel, dict, title) {
  
  // Create and add the legend title.
  var legendTitle = ui.Label({
    value: title,
    style: {
      fontWeight: 'bold',
      fontSize: '18px',
      margin: '0 0 4px 0',
      padding: '0'
    }
  });
  panel.add(legendTitle);
  
  var loading = ui.Label('Loading legend...', {margin: '2px 0 4px 0'});
  panel.add(loading);
  
  // Creates and styles 1 row of the legend.
  var makeRow = function(color, name) {
    // Create the label that is actually the colored box.
    var colorBox = ui.Label({
      style: {
        backgroundColor: color,
        // Use padding to give the box height and width.
        padding: '8px',
        margin: '0 0 4px 0'
      }
    });
  
    // Create the label filled with the description text.
    var description = ui.Label({
      value: name,
      style: {margin: '0 0 4px 6px'}
    });
  
    return ui.Panel({
      widgets: [colorBox, description],
      layout: ui.Panel.Layout.Flow('horizontal')
    });
  };
  
  // Get the list of palette colors and class names from the image.
  var palette = dict['colors'];
  var names = dict['names'];
  loading.style().set('shown', false);
  
  for (var i = 0; i < names.length; i++) {
    panel.add(makeRow(palette[i], names[i]));
  }
  
  Map.add(panel);
}

addCategoricalLegend(legend, dict, 'Population Count(estimate)');

//Cast to Int 16 & mask no data value
function cast(image){
  var img = image.toInt16()
  return img.mask(img.neq(-32768)).copyProperties(image)
  
}

//Datasets need explicit casting owing to difference in data type from source
landscan_usa_night= landscan_usa_night.map(cast)
landscan_usa_day= landscan_usa_day.map(cast)

Map.addLayer(ee.Image(landscan_usa_night.filterDate('2016-01-01','2016-12-31').median()).sldStyle(popcount_intervals),{},'LANDSCAN USA NIGHT 2016',false)
Map.addLayer(ee.Image(landscan_usa_night.filterDate('2021-01-01','2021-12-31').median()).sldStyle(popcount_intervals),{},'LANDSCAN USA NIGHT 2021',false)

Map.addLayer(ee.Image(landscan_usa_day.filterDate('2016-01-01','2016-12-31').median()).sldStyle(popcount_intervals),{},'LANDSCAN USA DAY 2016',false)
Map.addLayer(ee.Image(landscan_usa_day.filterDate('2021-01-01','2021-12-31').median()).sldStyle(popcount_intervals),{},'LANDSCAN USA DAY 2021',false)

Sample code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:population-socioeconomics/LANDSCAN-USA

Earth Engine Snippet: LANDSCAN HD

代码语言:javascript
复制
var landscan_hd = ee.ImageCollection("projects/sat-io/open-datasets/ORNL/LANDSCAN_HD");
var popcount_intervals =
'<RasterSymbolizer>' +
' <ColorMap type="intervals" extended="false" >' +
    '<ColorMapEntry color="#CCCCCC" quantity="0" label="No Data"/>' +
    '<ColorMapEntry color="#FFFFBE" quantity="5" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FEFF73" quantity="25" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FEFF2C" quantity="50" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FFAA27" quantity="100" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FF6625" quantity="500" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#FF0023" quantity="2500" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#CC001A" quantity="5000" label="Population Count (Estimate)"/>' +
    '<ColorMapEntry color="#730009" quantity="185000" label="Population Count (Estimate)"/>' +
  '</ColorMap>' +
'</RasterSymbolizer>';

// Define a dictionary which will be used to make legend and visualize image on map
var dict = {
  "names": [
    "0",
    "1-5",
    "6-25",
    "26-50",
    "51-100",
    "101-500",
    "501-2500",
    "2501-5000",
    "5001-185000"
  ],
  "colors": [
    "#CCCCCC",
    "#FFFFBE",
    "#FEFF73",
    "#FEFF2C",
    "#FFAA27",
    "#FF6625",
    "#FF0023",
    "#CC001A",
    "#730009"
  ]};
  
  // Create a panel to hold the legend widget
var legend = ui.Panel({
  style: {
    position: 'bottom-left',
    padding: '8px 15px'
  }
});

// Function to generate the legend
function addCategoricalLegend(panel, dict, title) {
  
  // Create and add the legend title.
  var legendTitle = ui.Label({
    value: title,
    style: {
      fontWeight: 'bold',
      fontSize: '18px',
      margin: '0 0 4px 0',
      padding: '0'
    }
  });
  panel.add(legendTitle);
  
  var loading = ui.Label('Loading legend...', {margin: '2px 0 4px 0'});
  panel.add(loading);
  
  // Creates and styles 1 row of the legend.
  var makeRow = function(color, name) {
    // Create the label that is actually the colored box.
    var colorBox = ui.Label({
      style: {
        backgroundColor: color,
        // Use padding to give the box height and width.
        padding: '8px',
        margin: '0 0 4px 0'
      }
    });
  
    // Create the label filled with the description text.
    var description = ui.Label({
      value: name,
      style: {margin: '0 0 4px 6px'}
    });
  
    return ui.Panel({
      widgets: [colorBox, description],
      layout: ui.Panel.Layout.Flow('horizontal')
    });
  };
  
  // Get the list of palette colors and class names from the image.
  var palette = dict['colors'];
  var names = dict['names'];
  loading.style().set('shown', false);
  
  for (var i = 0; i < names.length; i++) {
    panel.add(makeRow(palette[i], names[i]));
  }
  
  Map.add(panel);
}

addCategoricalLegend(legend, dict, 'Population Count(estimate)');


print(landscan_hd.aggregate_array('country'))
Map.addLayer(landscan_hd.mosaic().sldStyle(popcount_intervals), {}, 'Population Count Estimate LANDSCAN HD');

Sample code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:population-socioeconomics/LANDSCAN-HD

License

These datasets are offered under the Creative Commons Attribution 4.0 International License. Users are free to use, copy, distribute, transmit, and adapt the data for commercial and non-commercial purposes, without restriction, as long as clear attribution of the source is provided.

Created by: Oakridge National Laboratory

Curated in GEE by : Samapriya Roy

keywords: Global Population, Population count, Diurnal population, remote sensing, machine learning

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-02-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档