前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >搜索引擎RAG召回效果评测MTEB介绍与使用入门

搜索引擎RAG召回效果评测MTEB介绍与使用入门

作者头像
JadePeng
发布2024-02-27 09:07:00
4900
发布2024-02-27 09:07:00
举报
文章被收录于专栏:JadePeng的技术博客

RAG 评测数据集建设尚处于初期阶段,缺乏针对特定领域和场景的专业数据集。市面上常见的 MS-Marco 和 BEIR 数据集覆盖范围有限,且在实际使用场景中效果可能与评测表现不符。目前最权威的检索榜单是 HuggingFace MTEB,今天我们来学习使用MTEB,并来评测自研模型recall效果。

MTEB 是一个包含广泛文本嵌入(Text Embedding)的基准测试,它提供了多种语言的数十个数据集,用于各种 NLP 任务,例如文本分类、聚类、检索和文本相似性。MTEB 提供了一个公共排行榜,允许研究人员提交他们的结果并跟踪他们的进展。MTEB 还提供了一个简单的 API,允许研究人员轻松地将他们的模型与基准测试进行比较。

安装使用

代码语言:javascript
复制
pip install mteb

使用入门

代码语言:javascript
复制
from mteb import MTEB
from sentence_transformers import SentenceTransformer

# Define the sentence-transformers model name
model_name = "average_word_embeddings_komninos"

model = SentenceTransformer(model_name)
evaluation = MTEB(tasks=["Banking77Classification"])
results = evaluation.run(model, output_folder=f"results/{model_name}")
  • 也可以使用官方提供的 CLI
代码语言:javascript
复制
mteb --available_tasks

mteb -m average_word_embeddings_komninos \
    -t Banking77Classification  \
    --output_folder results/average_word_embeddings_komninos \
    --verbosity 3

高级用法

测试数据集选择

MTEB支持指定数据集,可以通过下面的形式

  • 按task_type任务类型(例如“聚类”或“分类”)
代码语言:javascript
复制
evaluation = MTEB(task_types=['Clustering', 'Retrieval']) # Only select clustering and retrieval tasks
  • 按类别划分, 例如“句子到句子 "S2S" (sentence to sentence) "P2P" (paragraph to paragraph)
代码语言:javascript
复制
evaluation = MTEB(task_categories=['S2S']) # Only select sentence2sentence datasets
  • 按照文本语言
代码语言:javascript
复制
evaluation = MTEB(task_langs=["en", "de"]) # Only select datasets which are "en", "de" or "en-de"

还可以针对数据集选择语言:

代码语言:javascript
复制
from mteb.tasks import AmazonReviewsClassification, BUCCBitextMining

evaluation = MTEB(tasks=[
        AmazonReviewsClassification(langs=["en", "fr"]) # Only load "en" and "fr" subsets of Amazon Reviews
        BUCCBitextMining(langs=["de-en"]), # Only load "de-en" subset of BUCC
])

可为某些任务集合提供预设

代码语言:javascript
复制
from mteb import MTEB_MAIN_EN
evaluation = MTEB(tasks=MTEB_MAIN_EN, task_langs=["en"])

自定义评测 split

有的数据集有多个split,评测会比较耗时,可以指定splits,来减少评测时间,比如下面的就指定了只用test split。

代码语言:javascript
复制
evaluation.run(model, eval_splits=["test"])

自定义评测模型

如果想自定义评测模型,可以自定义一个类,只要实现一个encode函数,输入是一个句子列表,返回的是一个嵌入向量列表(嵌入可以是np.array、torch.tensor等)。可以参考 mteb/mtebscripts repo 仓库。

代码语言:javascript
复制
class MyModel():
    def encode(self, sentences, batch_size=32, **kwargs):
        """
        Returns a list of embeddings for the given sentences.
        Args:
            sentences (`List[str]`): List of sentences to encode
            batch_size (`int`): Batch size for the encoding

        Returns:
            `List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
        """
        pass

model = MyModel()
evaluation = MTEB(tasks=["Banking77Classification"])
evaluation.run(model)

如果针对query和corpus需要使用不同的encode方法,可以独立提供encode_queries and encode_corpus两个方法。

代码语言:javascript
复制
class MyModel():
    def encode_queries(self, queries, batch_size=32, **kwargs):
        """
        Returns a list of embeddings for the given sentences.
        Args:
            queries (`List[str]`): List of sentences to encode
            batch_size (`int`): Batch size for the encoding

        Returns:
            `List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
        """
        pass

    def encode_corpus(self, corpus, batch_size=32, **kwargs):
        """
        Returns a list of embeddings for the given sentences.
        Args:
            corpus (`List[str]` or `List[Dict[str, str]]`): List of sentences to encode
                or list of dictionaries with keys "title" and "text"
            batch_size (`int`): Batch size for the encoding

        Returns:
            `List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
        """
        pass

自定义评测Task(数据集)

要添加一个新任务,你需要实现一个从与任务类型相关的AbsTask继承的新类(例如,对于重排任务是AbsTaskReranking)。你可以在这里找到支持的任务类型。

比如下面的自定义重排任务:

代码语言:javascript
复制
from mteb import MTEB
from mteb.abstasks.AbsTaskReranking import AbsTaskReranking
from sentence_transformers import SentenceTransformer


class MindSmallReranking(AbsTaskReranking):
    @property
    def description(self):
        return {
            "name": "MindSmallReranking",
            "hf_hub_name": "mteb/mind_small",
            "description": "Microsoft News Dataset: A Large-Scale English Dataset for News Recommendation Research",
            "reference": "https://www.microsoft.com/en-us/research/uploads/prod/2019/03/nl4se18LinkSO.pdf",
            "type": "Reranking",
            "category": "s2s",
            "eval_splits": ["validation"],
            "eval_langs": ["en"],
            "main_score": "map",
        }

model = SentenceTransformer("average_word_embeddings_komninos")
evaluation = MTEB(tasks=[MindSmallReranking()])
evaluation.run(model)

源码分析

Retrieval召回评测

召回评测是通过RetrievalEvaluator类实现的。

代码语言:javascript
复制
def __init__(
        self,
        queries: Dict[str, str],  # qid => query
        corpus: Dict[str, str],  # cid => doc
        relevant_docs: Dict[str, Set[str]],  # qid => Set[cid]
        corpus_chunk_size: int = 50000,
        mrr_at_k: List[int] = [10],
        ndcg_at_k: List[int] = [10],
        accuracy_at_k: List[int] = [1, 3, 5, 10],
        precision_recall_at_k: List[int] = [1, 3, 5, 10],
        map_at_k: List[int] = [100],
        show_progress_bar: bool = False,
        batch_size: int = 32,
        name: str = "",
        score_functions: List[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = {
            "cos_sim": cos_sim,
            "dot": dot_score,
        },  # Score function, higher=more similar
        main_score_function: str = None,
        limit: int = None,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.queries_ids = []
        for qid in queries:
            if qid in relevant_docs and len(relevant_docs[qid]) > 0:
                self.queries_ids.append(qid)
                if limit and len(self.queries_ids) >= limit:
                    break

        self.queries = [queries[qid] for qid in self.queries_ids]

        self.corpus_ids = list(corpus.keys())
        self.corpus = [corpus[cid] for cid in self.corpus_ids]

        self.relevant_docs = relevant_docs
        self.corpus_chunk_size = corpus_chunk_size
        self.mrr_at_k = mrr_at_k
        self.ndcg_at_k = ndcg_at_k
        self.accuracy_at_k = accuracy_at_k
        self.precision_recall_at_k = precision_recall_at_k
        self.map_at_k = map_at_k

        self.show_progress_bar = show_progress_bar
        self.batch_size = batch_size
        self.name = name
        self.score_functions = score_functions
        self.score_function_names = sorted(list(self.score_functions.keys()))
        self.main_score_function = main_score_function

构造函数几个重要的参数:

- queries: Dict[str, str], # qid => query qid到query的dict - corpus: Dict[str, str], # cid => doc docid到doc的dict - relevant_docs: Dict[str, Set[str]], # qid => Set[cid] qid到相关docid的dict

因此,要自定义评测任务,需要提供这些数据。

具体的评测函数在compute_metrics里:

代码语言:javascript
复制
def compute_metrics(self, model, corpus_model=None, corpus_embeddings: torch.Tensor = None) -> Dict[str, float]:
        if corpus_model is None:
            corpus_model = model

        max_k = max(
            max(self.mrr_at_k),
            max(self.ndcg_at_k),
            max(self.accuracy_at_k),
            max(self.precision_recall_at_k),
            max(self.map_at_k),
        )

        # Compute embedding for the queries
        logger.info("Encoding the queries...")
        # We don't know if encode has the kwargs show_progress_bar
        kwargs = {
            "show_progress_bar": self.show_progress_bar
        } if "show_progress_bar" in inspect.signature(model.encode).parameters else {}
        query_embeddings = np.asarray(model.encode(self.queries, batch_size=self.batch_size, **kwargs))
        queries_result_list = {}
        for name in self.score_functions:
            queries_result_list[name] = [[] for _ in range(len(query_embeddings))]

        # Iterate over chunks of the corpus
        logger.info("Encoding chunks of corpus, and computing similarity scores with queries...")
        for corpus_start_idx in trange(
            0,
            len(self.corpus),
            self.corpus_chunk_size,
            desc="Corpus Chunks",
            disable=not self.show_progress_bar,
        ):
            # Encode chunk of corpus
            if corpus_embeddings is None:
                corpus_end_idx = min(corpus_start_idx + self.corpus_chunk_size, len(self.corpus))
                sub_corpus_embeddings = np.asarray(corpus_model.encode(
                    self.corpus[corpus_start_idx:corpus_end_idx],
                    batch_size=self.batch_size,
                ))
            else:
                corpus_end_idx = min(corpus_start_idx + self.corpus_chunk_size, len(corpus_embeddings))
                sub_corpus_embeddings = corpus_embeddings[corpus_start_idx:corpus_end_idx]

            # Compute cosine similarites
            for name, score_function in self.score_functions.items():
                pair_scores = score_function(query_embeddings, sub_corpus_embeddings)

                # Get top-k values
                pair_scores_top_k_values, pair_scores_top_k_idx = torch.topk(
                    pair_scores,
                    min(max_k, len(pair_scores[0])),
                    dim=1,
                    largest=True,
                    sorted=False,
                )
                pair_scores_top_k_values = pair_scores_top_k_values.cpu().tolist()
                pair_scores_top_k_idx = pair_scores_top_k_idx.cpu().tolist()

                for query_itr in range(len(query_embeddings)):
                    for sub_corpus_id, score in zip(
                        pair_scores_top_k_idx[query_itr],
                        pair_scores_top_k_values[query_itr],
                    ):
                        corpus_id = self.corpus_ids[corpus_start_idx + sub_corpus_id]
                        queries_result_list[name][query_itr].append({"corpus_id": corpus_id, "score": score})

        # Compute scores
        logger.info("Computing metrics...")
        scores = {name: self._compute_metrics(queries_result_list[name]) for name in self.score_functions}

        return scores
  • model(embedding模型),corpus_model(如果doc用单独的embedding模型,需要传入这个参数,否则默认使用和query一样的model)
  • 首先会计算query_embedding query_embeddings = np.asarray(model.encode(self.queries, batch_size=self.batch_size, **kwargs))
  • 然后计算corpus_embeddings
  • 通过score_function,计算tok_k, 结果放到queries_result_list
  • 根据召回结果计算指标_compute_metrics, 会计算"mrr@k", "ndcg@k", "accuracy@k", "precision_recall@k", "map@k"等指标

Reranking 精排

精排是通过RerankingEvaluator来实现的。

代码语言:javascript
复制
class RerankingEvaluator(Evaluator):
    """
    This class evaluates a SentenceTransformer model for the task of re-ranking.
    Given a query and a list of documents, it computes the score [query, doc_i] for all possible
    documents and sorts them in decreasing order. Then, MRR@10 and MAP is compute to measure the quality of the ranking.
    :param samples: Must be a list and each element is of the form:
        - {'query': '', 'positive': [], 'negative': []}. Query is the search query, positive is a list of positive
        (relevant) documents, negative is a list of negative (irrelevant) documents.
        - {'query': [], 'positive': [], 'negative': []}. Where query is a list of strings, which embeddings we average
        to get the query embedding.
    """

    def __init__(
        self,
        samples,
        mrr_at_k: int = 10,
        name: str = "",
        similarity_fct=cos_sim,
        batch_size: int = 512,
        use_batched_encoding: bool = True,
        limit: int = None,
        **kwargs,
    ):

给定一个query和一组文档,模型计算文档得分,并按降序排列,最后计算MRR@10和MAP指标来衡量排名的质量。

__init__方法接收以下参数:

  • samples:必须是一个列表,每个元素的形式为:
    • {'query': '', 'positive': [], 'negative': []}。查询是搜索查询,正文档是相关(正面)文档的列表,负文档是无关(负面)文档的列表。
    • {'query': [], 'positive': [], 'negative': []}。其中查询是一个字符串列表,我们将这些字符串的平均嵌入作为查询嵌入。
  • mrr_at_k:默认值为10,表示计算MRR时考虑的前k个结果。
  • name:默认值为空字符串,表示评估器的名称。
  • similarity_fct:默认值为cos_sim,表示用于计算相似度的函数。

compute_metrics_batched 计算得分,还是计算的cos得分,这里相当于直接计算的embedding的排序能力,如果要计算cross模型的排序能力,默认的代码不适用,需要重新定制。

评测实践

说了这么多,现在切入正题:

  • 评测自研模型的召回能力 —— 自定义模型
  • 自定义评测集,对比开源模型和自研模型的效果 —— 自定义评测任务

自研模型召回效果评测

我们先评估模型召回效果,训练好的模型导出为onnx,因此我们通过onnxrutime来进行推理,先自定义模型:

代码语言:javascript
复制
from mteb import MTEB
import onnxruntime as ort
from paddlenlp.transformers import AutoTokenizer
import math
from tqdm import tqdm
# 模型路径
model_path = "onnx/fp16_model.onnx"
tokenizer_path = "model_520000"

class MyModel():
    def __init__(self, use_gpu=True):
        providers = ['CUDAExecutionProvider'] if use_gpu else ['CPUExecutionProvider']
        sess_options = ort.SessionOptions()
        self.predictor = ort.InferenceSession( 
            model_path, sess_options=sess_options, providers=providers)
        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
        
    def encode(self, sentences, batch_size=64, **kwargs):
        all_embeddings = []
        # 向上取整
        batch_count = math.ceil(len(sentences) / batch_size)
        
        for i in tqdm(range(batch_count)):
            # 按batch
            sub_sentences = sentences[i * batch_size : min(len(sentences), (i + 1) * batch_size)]
            features = self.tokenizer(sub_sentences, max_seq_len=128,
                                    pad_to_max_seq_len=True, truncation_strategy="longest_first")
            vecs = self.predictor.run(None, features.data)
            all_embeddings.extend(vecs[0])
        return all_embeddings

由于传进来的sentences是所有的数据,我们需要按照batch_size,分批进行embedding计算,计算好的放入all_embeddings,最后返回即可。

自定义召回评测任务

上面分析源代码时提到了,自定义时需要提供qurey,doc,以及query的相关doc

假设我们的自定义测试为jsonline格式,每行包含query,以及相关的doc,json格式如下:

代码语言:javascript
复制
{

    "query": "《1984》是什么",
    "data": [
        {

            "title": "《1984》介绍-知乎",
            "summary": "《1984》是伪装成小说的政治思想...",
            "url": "",
            "id": 5031622209044687985,
            "answer": "完全相关",
            "accuracy": "无错",
            "result": "good"
        }
    ]
}

那么我们可以编写自定义召回评测任务:

代码语言:javascript
复制
class SSRetrieval(AbsTaskRetrieval):
    @property
    def description(self):
        return {
            'name': 'SSRetrieval',
            'description': 'SSRetrieval是S研发部测试团队准备的召回测试集',
            'type': 'Retrieval',
            'category': 's2p',
            'json_path': '/data/xapian-core-1.4.24/demo/result.json',
            'eval_splits': ['dev'],
            'eval_langs': ['zh'],
            'main_score': 'recall_at_10',
        }
    

    def load_data(self, **kwargs):
        if self.data_loaded:
            return

        self.corpus = {} # doc_id => doc
        self.queries = {}  # qid => query
        self.relevant_docs = {} # qid => Set[doc_id]
        query_index = 1
        with open(self.description['json_path'], 'r', encoding='utf-8') as f:
            for line in f:
                if "完全相关" not in line:
                    continue
                line =  json.loads(line)
                query =  line['query']
                query_id = str(query_index)
                self.queries[query_id] = query
                query_index = query_index + 1
                query_relevant_docs = []
                for doc in line['data']:
                    doc_id = str(doc['id'])
                    self.corpus[doc_id] = {"title": doc["title"], "text": doc["summary"]}
                    if doc['answer'] == "完全相关":
                        if query_id not in self.relevant_docs:
                            self.relevant_docs[query_id] = {}
                        self.relevant_docs[query_id][doc_id] = 1 
                
                # debug使用
                # if query_index == 100:
                #     break

        self.queries = DatasetDict({"dev": self.queries})
        self.corpus = DatasetDict({"dev": self.corpus})
        self.relevant_docs = DatasetDict({"dev": self.relevant_docs})
        
        self.data_loaded = True

用自定义模型,评测自定义任务

代码语言:javascript
复制
if __name__ == '__main__':

    model = MyModel()
    
    # task_names = [t.description["name"] for t in MTEB(task_types='Retrieval',
    #                                                   task_langs=['zh', 'zh-CN']).tasks]
    
    task_names = ["SSRetrieval"]

    for task in task_names:
        model.query_instruction_for_retrieval = None
        evaluation = MTEB(tasks=[task], task_langs=['zh', 'zh-CN'])
        evaluation.run(model, output_folder=f"zh_results/256_model", batch_size=64)

总结

mteb 最为embedding召回效果测试,是一个权威的榜单,本身提供的工具框架也具备较好的扩展性,方便开发者自定义模型和自定义评测任务。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-02-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 安装使用
  • 使用入门
  • 高级用法
    • 测试数据集选择
      • 自定义评测 split
        • 自定义评测模型
          • 自定义评测Task(数据集)
          • 源码分析
            • Retrieval召回评测
              • Reranking 精排
              • 评测实践
                • 自研模型召回效果评测
                  • 自定义召回评测任务
                    • 用自定义模型,评测自定义任务
                    • 总结
                    领券
                    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档