前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >分类模型评估方法

分类模型评估方法

作者头像
@小森
发布2024-03-15 11:24:41
710
发布2024-03-15 11:24:41
举报
文章被收录于专栏:xiaosenxiaosen

1.数据集划分¶

1.1 为什么要划分数据集?¶

思考:我们有以下场景:

  • 将所有的数据都作为训练数据,训练出一个模型直接上线预测
  • 每当得到一个新的数据,则计算新数据到训练数据的距离,预测得到新数据的类别

存在问题:

  • 上线之前,如何评估模型的好坏?
  • 模型使用所有数据训练,使用哪些数据来进行模型评估?

结论:不能将所有数据集全部用于训练

为了能够评估模型的泛化能力,可以通过实验测试对学习器的泛化能力进行评估,进而做出选择。因此需要使用一个 "测试集" 来测试学习器对新样本的判别能力,以测试集上的 "测试误差" 作为泛化误差的近似。

一般测试集满足:

  1. 能代表整个数据集
  2. 测试集与训练集互斥
  3. 测试集与训练集建议比例: 2比8、3比7 等
1.2 数据集划分的方法¶

留出法:将数据集划分成两个互斥的集合:训练集,测试集

  • 训练集用于模型训练
  • 测试集用于模型验证
  • 也称之为简单交叉验证

交叉验证:将数据集划分为训练集,验证集,测试集

  • 训练集用于模型训练
  • 验证集用于参数调整
  • 测试集用于模型验证

留一法:每次从训练数据中抽取一条数据作为测试集

自助法:以自助采样(可重复采样、有放回采样)为基础

  • 在数据集D中随机抽取m个样本作为训练集
  • 没被随机抽取到的D-m条数据作为测试集
1.3 留出法(简单交叉验证)

留出法 (hold-out) 将数据集 D 划分为两个互斥的集合,其中一个集合作为训练集 S,另一个作为测试集 T。

代码语言:javascript
复制
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import ShuffleSplit
from collections import Counter
from sklearn.datasets import load_iris


def test01():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))

    # 2. 留出法(随机分割)
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
    print('随机类别分割:', Counter(y_train), Counter(y_test))

    # 3. 留出法(分层分割)
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y)
    print('分层类别分割:', Counter(y_train), Counter(y_test))


def test02():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))
    print('*' * 40)

    # 2. 多次划分(随机分割)
    spliter = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
    for train, test in spliter.split(x, y):
        print('随机多次分割:', Counter(y[test]))

    print('*' * 40)

    # 3. 多次划分(分层分割)
    spliter = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
    for train, test in spliter.split(x, y):
        print('分层多次分割:', Counter(y[test]))


if __name__ == '__main__':
    test01()
    test02()
1.4 交叉验证法

K-Fold交叉验证,将数据随机且均匀地分成k分,如上图所示(k为10),假设每份数据的标号为0-9

  • 第一次使用标号为0-8的共9份数据来做训练,而使用标号为9的这一份数据来进行测试,得到一个准确率
  • 第二次使用标记为1-9的共9份数据进行训练,而使用标号为0的这份数据进行测试,得到第二个准确率
  • 以此类推,每次使用9份数据作为训练,而使用剩下的一份数据进行测试
  • 共进行10次训练,最后模型的准确率为10次准确率的平均值
  • 这样可以避免了数据划分而造成的评估不准确的问题。
代码语言:javascript
复制
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from collections import Counter
from sklearn.datasets import load_iris

def test():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))
    print('*' * 40)

    # 2. 随机交叉验证
    spliter = KFold(n_splits=5, shuffle=True, random_state=0)
    for train, test in spliter.split(x, y):
        print('随机交叉验证:', Counter(y[test]))

    print('*' * 40)

    # 3. 分层交叉验证
    spliter = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
    for train, test in spliter.split(x, y):
        print('分层交叉验证:', Counter(y[test]))


if __name__ == '__main__':
    test()
1.5 留一法

留一法( Leave-One-Out,简称LOO),即每次抽取一个样本做为测试集。

代码语言:javascript
复制
from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import LeavePOut
from sklearn.datasets import load_iris
from collections import Counter


def test01():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))
    print('*' * 40)

    # 2. 留一法
    spliter = LeaveOneOut()
    for train, test in spliter.split(x, y):
        print('训练集:', len(train), '测试集:', len(test), test)

    print('*' * 40)

    # 3. 留P法
    spliter = LeavePOut(p=3)
    for train, test in spliter.split(x, y):
        print('训练集:', len(train), '测试集:', len(test), test)


if __name__ == '__main__':
    test01()
1.6 自助法

每次随机从D中抽出一个样本,将其拷贝放入D,然后再将该样本放回初始数据集D中,使得该样本在下次采样时仍有可能被抽到; 这个过程重复执行m次后,我们就得到了包含m个样本的数据集D′,这就是自助采样的结果。

代码语言:javascript
复制
import pandas as pd


if __name__ == '__main__':

    # 1. 构造数据集
    data = [[90, 2, 10, 40],
            [60, 4, 15, 45],
            [75, 3, 13, 46],
            [78, 2, 64, 22]]

    data = pd.DataFrame(data)
    print('数据集:\n',data)
    print('*' * 30)

    # 2. 产生训练集
    train = data.sample(frac=1, replace=True)
    print('训练集:\n', train)

    print('*' * 30)

    # 3. 产生测试集
    test = data.loc[data.index.difference(train.index)]
    print('测试集:\n', test)

2.分类算法的评估标准¶

2.1 分类算法的评估

如何评估分类算法?

  • 利用训练好的模型使用测试集的特征值进行预测
  • 将预测结果和测试集的目标值比较,计算预测正确的百分比
  • 这个百分比就是准确率 accuracy, 准确率越高说明模型效果越好
代码语言:javascript
复制
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
#加载鸢尾花数据
X,y = datasets.load_iris(return_X_y = True)
#训练集 测试集划分
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
# 创建KNN分类器对象 近邻数为6
knn_clf = KNeighborsClassifier(n_neighbors=6)
#训练集训练模型
knn_clf.fit(X_train,y_train)
#使用训练好的模型进行预测
y_predict = knn_clf.predict(X_test)

计算准确率:

代码语言:javascript
复制
sum(y_predict==y_test)/y_test.shape[0]
2.2 SKlearn中模型评估API介绍

sklearn封装了计算准确率的相关API:

  • sklearn.metrics包中的accuracy_score方法: 传入预测结果和测试集的标签, 返回预测准去率
  • 分类模型对象的 score 方法:传入测试集特征值,测试集目标值
代码语言:javascript
复制
#计算准确率
from sklearn.metrics import accuracy_score
#方式1:
accuracy_score(y_test,y_predict)
#方式2:
knn_classifier.score(X_test,y_test)

3. 小结¶

  1. 留出法每次从数据集中选择一部分作为测试集、一部分作为训练集
  2. 交叉验证法将数据集等份为 N 份,其中一部分做验证集,其他做训练集
  3. 留一法每次选择一个样本做验证集,其他数据集做训练集
  4. 自助法通过有放回的抽样产生训练集、验证集
  5. 通过accuracy_score方法 或者分类模型对象的score方法可以计算分类模型的预测准确率用于模型评估
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2023-12-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.数据集划分¶
    • 1.1 为什么要划分数据集?¶
      • 1.2 数据集划分的方法¶
        • 1.3 留出法(简单交叉验证)
          • 1.4 交叉验证法
            • 1.5 留一法
              • 1.6 自助法
              • 2.分类算法的评估标准¶
                • 2.1 分类算法的评估¶
                  • 2.2 SKlearn中模型评估API介绍
                  • 3. 小结¶
                  相关产品与服务
                  腾讯云服务器利旧
                  云服务器(Cloud Virtual Machine,CVM)提供安全可靠的弹性计算服务。 您可以实时扩展或缩减计算资源,适应变化的业务需求,并只需按实际使用的资源计费。使用 CVM 可以极大降低您的软硬件采购成本,简化 IT 运维工作。
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档