前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于Rust的Tile-Based游戏开发杂记(02)ggez绘图实操

基于Rust的Tile-Based游戏开发杂记(02)ggez绘图实操

作者头像
w4ngzhen
发布2024-03-18 08:56:54
1880
发布2024-03-18 08:56:54
举报
文章被收录于专栏:编译思想

尽管ggez提供了很多相关特性的demo供运行查看,但笔者第一次使用的时候还是有很多疑惑不解。经过仔细阅读demo代码并结合自己的实践,逐步了解了ggez在不同场景下的绘图方式,在此篇文章进行一定的总结,希望能够帮助到使用ggez的读者。

基本模式

在ggez官方文档中提到一个核心的功能就是基于wgpu图形API的硬件加速的2D渲染:

Hardware-accelerated 2D rendering built on the wgpu graphics API

ggez的基础绘制模式一般分为3步:

  1. 在每一次绘图事件回调中,通过图形上下文构造一个ggez封装的画布Canvas实例;
  2. 调用画布的draw方法,传入想要绘制的图形(例如一个矩形、一个圆)和相关绘图参数(位置、大小缩放等变换);
  3. 完成所有图像绘制后,调用画布的finish方法,向底层图形模块进行一次绘图提交,进而触发底层将最终渲染的图像呈现到画布区域上。

从代码的角度来看,大致如下:

代码语言:javascript
复制
struct MyState {}

impl EventHandler for MyState {
    fn update(&mut self, _ctx: &mut Context) -> Result<(), GameError> {
        Ok(())
    }

    ///
    /// 绘图
    ///
    fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
        // 1. 构造canvas实例
        let mut canvas =
            graphics::Canvas::from_frame(ctx, graphics::Color::from([1.0, 1.0, 1.0, 1.0]));

        // 2. 绘图
   			// ... ...

        // 3. finish
        canvas.finish(ctx)?;
        Ok(())
    }
}

注释中步骤1、3的代码一般来说都很固定,读者根据注释应该很容易理解,这里不再赘述,接下来我们重点关注具体的图形绘制代码。

简单绘制一个矩形

当我们希望在窗口上左上角(10, 20)的位置绘制一个40 x 50的红色矩形时,我们可以通过编写如下的代码来完成:

代码语言:javascript
复制
fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
    // 1. 构造canvas实例
    let mut canvas =
        graphics::Canvas::from_frame(ctx, graphics::Color::from([1.0, 1.0, 1.0, 1.0]));

    // 2. 绘图
    let draw_param = DrawParam::new()
  			.color(Color::new(1.0, 0.0, 0.0, 1.0))
        .dest(Point2::from([10., 20.]))
        .scale(Point2::from([40., 50.]));
    canvas.draw(&Quad, draw_param);

    // 3. finish
    canvas.finish(ctx)?;
    Ok(())
}

本文将在接下来的内容中逐步介绍不同场景下的绘制,主要会更改关于上述代码中fn draw中的内容,其余基本不会改变,所以后续的代码片段没有特殊说明的情况下,均只会贴出fn draw中的内容。

我们首先构造一个DrawParam实例,通过它来描述我们最终期望绘制的图形的位置和大小。其中,.color()不难理解即配置颜色;dest指绘制的目标位置;最后,我们定义绘制的矩形的尺寸,但这里值得注意的是,API提供的是scale(中文译为“缩放”),并不是一个类似于size名称的API,对于初学者来说,这其实是有点反直觉的,别着急,我们稍后就来解释这个地方的概念。

接下来,调用draw时,我们第一参数传给的是一个Quad实例(的引用),第二个参数就是DrawParam数据。这个Quad是什么?通过查看源码文档,我们了解到Quad是ggez内置的一个最基础的1 x 1的Mesh(图形学中一般译为“网格”):

A Drawable unit type that maps to a simple 1x1 quad mesh. 一种可绘制的单元类型,映射到简单的1x1四方网格。

这里,我们不深究Quad这个1 x 1的mesh网格在计算机图形学中的意义,先简单将其理解为一个1 x 1的小方块。那么我们再回看之前提到的DrawParam::scale,该API指定的是Quad的缩放比例,也就是说,当我们代码中边写的是scale([40., 50.])的时候,实际上就是希望将一个原本1 x 1的矩形,使其宽扩大40倍,高扩大50倍。

为什么要使用缩放而不是直观的定义尺寸?这涉及到图形学中的变换,我们暂时不在本文中深究。

复杂图形

前面的Quad读者可以理解为只是ggez内置的一个极为简单的mesh“模板”,通过它我们能在画布指定位置绘制一个指定大小且纯色的矩形块。但实际上,我们在绘图的过程中必然不可能只会画这些简单的方块,或多或少都会画一些不同形状的几何,譬如圆、椭圆、三角形等,以及我们可能还需要为这些几何图形实现渐变,增加边框等效果。作为一款支持2D渲染的游戏框架,这部分的能力当然不会缺失。接下来我们继续介绍ggez在复杂图形的绘图方面的内容。

Mesh

在ggez中,提供了图形学知识体系中的Mesh数据结构,它是一份包含顶点数据缓存、索引数据缓存,并可以存储在GPU上的数据,并且通过文档我们了解到它的克隆复制成本很低。

Mesh data stored on the GPU as a vertex and index buffer. Cheap to clone.

关于Mesh的数据结构的含义,如果读者没有学习过计算机图形学,理解起来可能有困难。但在这里,我们可以暂时将它理解为想要通过GPU帮助我们绘图时,提供的一份较为底层的,GPU能直接使用的数据。比如,我们想要画一个矩形,从应用层面的角度,我们可能会定义一个数据结构叫Rect,它包含如下的信息:

  1. 位置(position)
  2. 宽高(width和height)
  3. 颜色(color)

但是GPU绘图的时候,我们需要将这些信息转换为GPU能够使用的,更为底层的数据,可能是四个顶点、颜色等数据。

那么,在ggez库中应该如何创建一份Mesh数据呢?以创建一个圆为例,通过阅读文档,我们可以使用Mesh::new_circle方法得到:

代码语言:javascript
复制
let circle_mesh = Mesh::new_circle(
    ctx, // ctx: &mut Context
    Fill(FillOptions::default()), // 填充模式
    [50., 50.], // 圆心
    25., // 半径
    0.01, // 绘制圆弧曲线时多边形长度,越小越圆。
    Color::from_rgb(255, 0, 0) // 颜色
)

该方法的入参也非常容易理解,就是一些绘制圆形的基本配置(半径、颜色等)。通过该方法构造一个Mesh后,我们就可以按照之前的方式,通过调用canvas.draw方法来绘制它:

代码语言:javascript
复制
let circle_mesh = Mesh::new_circle(
    ctx,
    Fill(FillOptions::default()),
    [50., 50.],
    25.,
    0.001,
    Color::from_rgb(255, 0, 0)
)?;
let draw_param = DrawParam::default()
    .dest(Point2::from([100., 100.]))
    .scale(Point2::from([1., 1.]))
    .color(Color::new(0.0, 1.0, 0.0, 1.0));
canvas.draw(&circle_mesh, draw_param);
Ok(())

看到这段代码,细心的读者会立刻发现,我们已经定义了圆心的位置[50.0, 50.0],但是在构造DrawParam数据的时候,又定义了一个:.dest(Point2::from([100., 100.])),即我们希望将图形绘制到(100, 100)这个位置,很明显这二者是有冲突的。所以实际是什么结果呢?这里直接给出结论:图形的最终位置为图形的自身位置 “叠加” DrawParam的位置配置。所以,上述代码中最终圆所处的位置为(150, 150)坐标处。

再来讨论.scale(Point2::from([1., 1.]))代码的意义。这里我们知道是对图形进行尺寸缩放,在水平和垂直方向上均缩放1.0倍,也就是说不改变图形原有大小。如果我们希望对这个图形在水平方向(x轴)上放大2倍,垂直方向不变,就可以通过scale参数来定制:.scale(Point2::from([2., 1.]))

最后是 .color(Color::new(0.0, 1.0, 0.0, 1.0));。通过该API,我们定义了图形在绘制的时候使用绿色。很显然,和前面我们构造circle_mesh指定的红色(Color::from_rgb(255, 0, 0))是不一致的。**这里最终的结果也是一种叠加,但是它们的叠加不是简单的加减,而是每一单色的值的相乘。**也就是说,按照上面的代码,最终:Red=255 * 0.0 = 0Green = 0 * 1.0Blue = 0 * 1.0 = 0,运行以后,你会发现显示出来的是一个黑色圆形!如果你不配置DrawParamcolor,它默认是白色([1.0, 1.0, 1.0, 1.0]),此时,按照相乘的结果,就始终等于你图形定义的颜色了。

下图是一个综合上述讲解后的一个图形:

010-draw-circle
010-draw-circle

此外,DrawParam还有诸如rotation(旋转)offset(偏移)等配置,但是通过阅读底层代码,我们会发现DrawParam关于图形位置、缩放等数据核心其实是通过变换transform这个字段数据存储的:

代码语言:javascript
复制
/// DrawParam源码数据结构
pub struct DrawParam {
    /// A portion of the drawable to clip, as a fraction of the whole image.
    /// Defaults to the whole image (\[0.0, 0.0\] to \[1.0, 1.0\]) if omitted.
    pub src: Rect,
    /// Default: white.
    pub color: Color,
    /// Where to put the object.
    pub transform: Transform, // <- 变换是核心
    /// The Z coordinate of the draw.
    pub z: ZIndex,
}

至于变换transform,如果学习过图形学、线代、向量等知识理解起来应该完全没有难度。

DrawParam的其他参数:pub src: Rectpub z: ZIndex,我们会在后面实践并解释。

目前为止,我们大致了解了图形绘制的两个部分:1、图形Mesh数据;2、DrawParam绘制定义数据。通过实践我们也了解了它们二者会有定义重叠的部分(例如位置、颜色等)以及叠加的方式。那么,当我们实际开发的时候,面对重叠的部分,究竟是通过配置Mesh本身还是DrawParam呢?要回答这个问题,我们首先要了解一份Mesh数据创建以后,它能做什么。通过阅读文档,我们发现Mesh数据在创建以后,仅仅是提供了一些克隆等API,也就是说,一旦Mesh数据构造完成,就无法对颜色、位置数据进行二次加工设置。而DrawParam数据很容易修改位置、大小、颜色等。也就是说,Mesh数据更偏向于静态绘图,而DrawParam主要负责可变化的绘制。如果在你的场景中,存在对一些图形按照每帧在不同的位置,呈现不同的颜色,那么笔者更建议创建一份图形的Mesh数据,然后在每帧绘制阶段通过临时构造DrawParam来制定当前帧的绘制情况。

举例来说,比如我想在窗体中绘制一个圆形,随着每帧从左到右移动,并且颜色随着从左到右从黑色变成红色:

020-draw-dynamic-circle
020-draw-dynamic-circle

为了达到这样的效果,最直观的做法是我们可以在每一次fn draw调用的时候,构造一份对应时刻的对应颜色的圆形的Mesh实例,并进行绘制。但是性能和资源利用更好的方式则是提前创建一份Mesh数据,并在每一次draw调用时,只改变DrawParam的参数即可:

030-draw-dynamic-circle-code
030-draw-dynamic-circle-code

MeshBuilder与MeshData

尽管比起之前的Qaud图形,我们现在已经能够绘制圆、三角形、多边形等更多种类的图形,但总的来说依然是一些常见的几何图形,对于实际的应用场景可能还远远不够。比如说,我们希望绘制一座房子,大概像下图这样:

040-house-draft
040-house-draft

我们将这个图形分解为三个部分:顶部使用一个棕色三角形作为房顶,房顶下方使用一个黄色矩形作为房屋体,在房屋体内部使用一个棕色的矩形作为门。按照之前的方式,我们首先构造mesh:

050-multi-mesh-a-house
050-multi-mesh-a-house

在这段代码中,我们首先在DrawHouseState结构体中增加了3个mesh数据字段:roof(屋顶)、house_body(房屋体)、door(门),在初始化阶段我们构造这三部分并存储起来。

接下来是绘制阶段代码:

代码语言:javascript
复制
fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
    // 1. 构造canvas实例
    let mut canvas =
        graphics::Canvas::from_frame(ctx, graphics::Color::from([1.0, 1.0, 1.0, 1.0]));

  	// 2. draw调用了3次!
    let draw_param = DrawParam::default()
        .dest(Point2::from([100., 100.]))
    canvas.draw(&self.roof, draw_param.clone());
    canvas.draw(&self.house_body, draw_param.clone());
    canvas.draw(&self.door, draw_param.clone());

    // 3. finish
    canvas.finish(ctx)?;
    Ok(())
}

在绘制阶段,我们定义了一份DrawParam数据,同时分别对roofhouse_body以及door进行绘制。这段代码运行后的效果如下:

060-house-result1
060-house-result1

上述代码并不复杂,相信读者能够理解。但是这样的方式并不优雅,因为随着图形结构复杂度愈来越高,我们不可能随时关注一大堆的mesh实例;此外,这样的方式还有一个问题:为了绘制一个“房子”,我们调用了3次canvas.draw方法,会有性能上的问题(后续会量化)。

为了解决上述问题,ggez为我们提供了MeshBuilder。通过MeshBuilder,我们可以将多个mesh同时组合得到一份整体的mesh数据:

070-single-mesh-a-house
070-single-mesh-a-house

上面的代码,就是通过MeshBuilder依次构造了一个三角形、两个矩形。MeshBuilder最后的build方法会返回一个MeshData,请注意,这的MeshData结构体并不是前面的Mesh数据,而是Mesh结构体创建的来源数据,我们可以将MeshData实例传递给Mesh::from_data方法来创建Mesh。于是,此处我们只通过一个mesh就包含了整个房屋的图形数据。

最后,在渲染的时候,我们只需要调用canvas.draw一次:

代码语言:javascript
复制
fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
        // 1. 构造canvas实例
        let mut canvas =
            graphics::Canvas::from_frame(ctx, graphics::Color::from([1.0, 1.0, 1.0, 1.0]));

        // 2. DrawParam和绘制一次
        let draw_param = DrawParam::default()
            .dest(Point2::from([100., 100.]));
        canvas.draw(&self.house, draw_param.clone());

        // 3. finish
        canvas.finish(ctx)?;
        Ok(())
    }

InstanceArray

理论上来讲,MeshBuilder提供了将基础图形构成复杂图形以及方便对其进行整体操作的能力。但还有一个场景我们需要进一步讨论:**如何绘制大量的图形?**有的读者可能会说,那好办,在绘图的时候,一个for循环,多次调用canvas.draw绘制大量的图形:

080-draw-house-for400
080-draw-house-for400

上述的代码,我们通过两个for循环共计400次,依次在(0, 0)(0, 50)等位置绘制了50x50的正方形,将原来的房子绘制到对应区域。其中,缩放代码let scale = [SIZE / 100., SIZE / 100.];含义是我们的房子本身的尺寸是宽100,高100的尺寸,为了将其刚好会知道50x50的区域内,就需要按照比例缩放:

090-house-scale
090-house-scale

上述的代码最终运行的效果如下:

100-draw-house-for400-result
100-draw-house-for400-result

从代码逻辑的角度上讲使用for循环还算过得去,但是从性能层面上却有很大的问题。在这里为了可视化性能,我们使用ggez提供的API获得整个应用在运行过程中的fps均值,以此粗略地估算应用在每一次刷新时的性能情况:

代码语言:javascript
复制
impl EventHandler for DrawMultiHouseState {
    fn update(&mut self, _ctx: &mut Context) -> Result<(), GameError> {
        println!("game fps: {:?}", _ctx.time.fps());
        Ok(())
    }

    fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
				// ... ...
    }
}

上述的代码,我们在每一次update中,向控制台打印当前应用的fps值。可以看到在笔者的机器上,未经过编译优化的代码,将这400个小房子绘制到屏幕上,平均的fps在12左右:

110-low-fps
110-low-fps

对于游戏来说,这么简单的绘制400个图形fps就这么低显然是不应该的。那么这里的最佳实践是什么呢?答案是使用ggez提供的InstanceArray。该InstanceArray可以用来一次性存储大量的DrawParam数据。当我们要绘制400个房子的时候,实际上只需要构造400个DrawParam,将它们存放到InstanceArray中,这400个DrawParam,每一个的dest参数都不同,用来表示400个房子的不同位置。当我们需要进行绘制的时候,只需要调用一次canvas.draw_instanced_mesh方法,将InstanceArray作为第二个参数传入,即可在屏幕上呈现这400个房子,而不是循环400次,每次draw一次:

120-draw-house-by-instance-arr-code
120-draw-house-by-instance-arr-code

核心本质是每调用一次draw,就是数据从内存到GPU的一次数据传输。

通过使用InstanceArray,在同样的编译条件下,在本人60hz刷新率的机器上,绘制这400个图形的fps均值直接拉满60帧:

130-full-fps
130-full-fps

图片与文本绘制

实际上,图片与文本绘制的模式大体上和前面的图形绘制是保持一致的,都是首先创建一个被绘制的实例:

  • 图片:ggez::graphics::Image
  • 文本:ggez::graphics::Text

然后构造DrawParam实例或是存放DrawParamInstanceArray实例;最后调用canvas.drawcanvas.draw_instanced_mesh完成单个或批量绘制。接下来我们分别介绍一下ggez绘制图片数据和文本的具体实践。

图片绘制

如果是对矮人要塞或是CDDA大灾变等Tile-Based游戏深入了解过,就会发现,这些游戏的图形通常不是一张又一张的小图片存放起来,而是使用一张NxN规格的图片,把所有的图块统一铺在上面的:

140-tile-img-in-picture
140-tile-img-in-picture

例如,上图是矮人要塞的Spacefox图块集。你会发现游戏中所有的图形元素都按照16x16的大小统一集中到了这张图片上。那么在实际运行中是如何渲染的呢?游戏只需要将这一张图片加载到内存中,当想要渲染一个“包裹”(上图的第一行倒数第五个就是“包裹”)图形的时候,只需要提供区域偏移信息即可只绘制。

当然,我们先介绍基础图片绘制的方式,将上述一整张图片绘制到窗体上。首先,我们需要加载图片:

代码语言:javascript
复制
pub struct DrawImageState {
    image: graphics::Image,
}

impl DrawImageState {
    pub fn new(ctx: &mut Context) -> GameResult<Self> {
        /// 使用该路径前,请手动将"spacefox_16x16.png"复制到
        /// 编译的生成的target/debug/resources目录下(没有请手动创建)
        let image = graphics::Image::from_path(ctx, "/spacefox_16x16.png")?;
        Ok(DrawImageState { image })
    }
}

上述代码在State结构体中定义了一个image字段,用于存放ggez::graphics::Image实例;在初始化代码中,我们通过调用graphics::Image::from_path来读取图片spacefox_16x16.png。**默认情况下,**图片的搜索目录会从可执行程序所在目录下的resources目录中查找。所以为了后续正常运行,我们先暂时手动将图片拷贝至对应目录:

150-copy-image
150-copy-image

关于ggez中的文件系统,后续会有文章详细讲解。

图片的加载和存储准备好以后,我们在绘图阶段编写如下代码:

代码语言:javascript
复制
fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
     // 1. 构造canvas实例
     let mut canvas =
         graphics::Canvas::from_frame(ctx, graphics::Color::from([1.0, 1.0, 1.0, 1.0]));

     // 2. 绘制图片到指定位置
     let dest_point = Vec2::new(0.0, 0.0);
     canvas.draw(&self.image, DrawParam::new().dest(dest_point));

     // 3. finish
     canvas.finish(ctx)?;
     Ok(())
 }

在实际运行以后,我们能够看到如下效果:

160-draw-full-image
160-draw-full-image

接下来,我们该如何将图片局部绘制到界面上?答案就是使用DrawParam的src参数来进行配置。首先,为了绘制上图第一行倒数第5个“包裹”图形,我们首先要确定它处于整张图片的哪个位置。已知图片尺寸为256x256像素,每一个图块尺寸为16x16,“包裹”图块处于水平第12个(基于0索引就是11),垂直第1个(基于0索引就是0)。所以,我们知道“包裹”所在的矩形区域为x = 11 * 16, y = 0 * 16, w = 16, h = 16

170-tile-rect
170-tile-rect

于是,我们创建对应区域数据,并作为参数传递给DrawParam:

代码语言:javascript
复制
fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
    /// ... ...
  
    // 2. 绘制图片到指定位置
    const TILE_SIZE: f32 = 16.;
    let src_rect = Rect::new(11. * TILE_SIZE, 0. * TILE_SIZE, TILE_SIZE, TILE_SIZE);
    canvas.draw(&self.image, DrawParam::new().src(src_rect).dest(Vec2::new(0.0, 0.0)));
  
	/// ... ...
}

初看这段代码,应该很好理解,但在实际运行后笔者会发现显示的很有问题。其实,核心原因是ggez中关于DrawParam::src所需要的矩形数据是一个相对的数据,它的注释如下:

代码语言:javascript
复制
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct DrawParam {
    /// A portion of the drawable to clip, as a fraction of the whole image.
    /// Defaults to the whole image (\[0.0, 0.0\] to \[1.0, 1.0\]) if omitted.
    pub src: Rect,
    /// ... ...
}

这段注释指的是:传入的Rect矩形的x、y、w、h都是相对于整张图片的相对值,其值范围是0.0到1.0之间的。回到我们的例子,“包裹”图块的对于整张图片的实际位置和尺寸数据是:x = 11 * 16, y = 0 * 16, w = 16, h = 16,那么x相对于整张图片是:(11 * 16) / 水平宽度256,y相对于图片水平是:(0 * 16) / 水平高度256,宽度w相对于整张图是16 / 256,高度h相对于整张图是16 / 256。所以我们需要做如下的转换处理才能正确绘制:

180-tile-ratio-rect
180-tile-ratio-rect

修正代码以后,我们能看到实际的运行效果:

190-draw-part-image
190-draw-part-image

文本绘制

使用ggez绘制文本,离不开两个重要的结构体:ggez::graphics::Textggez::graphics::TextFragment。其中,Text是被绘制的数据,而TextFragment主要用于定义一段文本中的局部结构,可以作为Text的参数:

200-draw-text
200-draw-text

上述的代码,我们首先使用Text::new("hello, world.")在画布上绘制文本:"hello, world.";然后,我们使用TextFragment构建了个两个片段:

  1. TextFragment::new("RED").color(Color::RED)
  2. TextFragment::new("BLUE").color(Color::BLUE)

然后通过它们构造了一个新的Text实例。这部分的含义是希望绘制的一段文本,"RED"使用红色绘制,"BLUE"使用蓝色绘制。

上述代码的最终效果如下:

210-draw-text-display
210-draw-text-display

写在最后

本文主要介绍了使用ggez的图形部分API进行一些基础图形、图片以及文本绘制。尽管ggez在官方提到图形渲染部分是基于wgpu的硬件加速的2D图形渲染:

  • Hardware-accelerated 2D rendering built on the wgpu graphics API

但由于ggez底层使用了wgpu,同时也通过一定方式暴露了wgpu的相关API,所以实际上我们依然可以进行利用wgpu进行3D图形绘制,不过这部分内容需要读者有相关3D图形渲染理论知识以及相关图形库API的使用经验,就不在本文中描述了,笔者可以通过官方样例代码一探究竟:

220-3d-cube
220-3d-cube

本章代码仓库地址:w4ngzhen/rs-game-dev (github.com)

代码语言:javascript
复制
cargo run --package chapter_02
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-03-162,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 基本模式
  • 简单绘制一个矩形
  • 复杂图形
    • Mesh
      • MeshBuilder与MeshData
        • InstanceArray
        • 图片与文本绘制
          • 图片绘制
            • 文本绘制
            • 写在最后
            相关产品与服务
            GPU 云服务器
            GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档