前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >python WAV音频文件处理—— (1)读写WAV文件

python WAV音频文件处理—— (1)读写WAV文件

作者头像
一只大鸽子
发布2024-04-11 13:10:18
2230
发布2024-04-11 13:10:18
举报

原文[1] 代码[2]

了解WAV文件格式

WAV是一种波形音频文件格式(Waveform Audio File Format)。虽然是一种古老的格式(九十年代初开发),但今天仍然可以看到这种文件。 WAV具有简单、可移植、高保真等特点。

WAV的波形

声音是一种波,可以用3个属性描述:

  • 振幅(Amplitude) 表示声波强度,可视为响度。
  • 频率(Frequency),波长的倒数,对应音高。
  • 相位(Phase)波开始时对应波周期中的位置。

如果你用音频软件(如Audacity)打开WAV文件,可能看到这样的波形

Audacity中的波形--振幅随时间变化

WAV 文件的结构

WAV 音频文件格式是一种二进制格式,结构如下:

WAV文件格式

Header 是一组元数据,描述了如何解释接下来的Frame。 Header中的参数说明:

  • Encoding:编码。样音频信号的数字表示。可用的编码类型包括未压缩的线性脉冲编码调制 (PCM) 和一些压缩格式,如 ADPCM、A-Law 或 μ-Law。
  • Channels:声道数。每帧中的声道数,对于单声道,通常等于 1 个,对于立体声音轨,通常等于 2 个,但对于环绕声录音,可能会更多。
  • Frame Rate:帧速率。也称采样率。
  • Bit Depth:位深度,每个音的比特位数。位深度越大,编码信号的动态范围越大,越能表现声音的细微差别。

为了忠实地表现音乐,大多数 WAV 文件使用立体声 PCM 编码,其中 16 位有符号整数以 44.1 kHz 采样。这些参数对应于标准 CD 质量的音频。巧合的是,这样的采样频率大约是大多数人能听到的最高频率的两倍。根据 Nyquist-Shannon 采样定理,这足以以数字形式捕获声音而不会失真。

Python的wave模块

wave 模块负责读取写入 WAV 文件(但不能播放声音)。

使用wave.open 读取wav文件将返回一个 wave.Wave_read object

代码语言:javascript
复制
import wave
with wave.open("Bongo_sound.wav") as wav_file:
    print(wav_file)

可以使用该对象检索存储在 WAV 文件Header信息并读取编码的音频帧

代码语言:javascript
复制
>>> with wave.open("Bongo_sound.wav") as wav_file:
...     metadata = wav_file.getparams() # header 
...     frames = wav_file.readframes(metadata.nframes) # frame
...

>>> metadata
_wave_params(
    nchannels=1,
    sampwidth=2,
    framerate=44100,
    nframes=212419,
    comptype='NONE',
    compname='not compressed'
)

>>> frames
b'\x01\x00\xfe\xff\x02\x00\xfe\xff\x01\x00\x01\x00\xfe\xff\x02\x00...'

>>> len(frames)
424838

读取的原始比特(bytes),我们需要手动解码。从Header中我们看到,每个音占2个字节(16位)。 我们可以用array模块:

代码语言:javascript
复制
>>> import array
>>> pcm_samples = array.array("h", frames)
>>> len(pcm_samples)
212419

或者使用struct模块:

代码语言:javascript
复制
>>> import struct
>>> format_string = "<" + "h" * (len(frames) // 2)
>>> pcm_samples = struct.unpack(format_string, frames)
>>> len(pcm_samples)
212419

<符号指示字节为小端格式(little-endian)。

numpy提供了更简单的方法:

代码语言:javascript
复制
>>> import numpy as np
>>> pcm_samples = np.frombuffer(frames, dtype="<h")
>>> normalized_amplitudes = pcm_samples / (2 ** 15)

numpy简洁高效,后面都使用numpy进行处理。

写WAV文件

从数学上讲,您可以将任何复杂声音表示为多个不同频率、振幅和相位的正弦波的总和。

正弦波

由于振幅A被缩放到[-1,1]之间,并且我们不关心相位,因此正弦波可以简化为:

代码语言:javascript
复制
import math

FRAMES_PER_SECOND = 44100

def sound_wave(frequency, num_seconds):
    for frame in range(round(num_seconds * FRAMES_PER_SECOND)):
        time = frame / FRAMES_PER_SECOND
        amplitude = math.sin(2 * math.pi * frequency * time)
        yield round((amplitude + 1) / 2 * 255)

现在,我们可以生成声音了。 下面我们生成一个频率为440Hz、持续2.5s的声音:

代码语言:javascript
复制
import math
import wave

...

with wave.open("output.wav", mode="wb") as wav_file:
    wav_file.setnchannels(1)
    wav_file.setsampwidth(1)
    wav_file.setframerate(FRAMES_PER_SECOND)
    wav_file.writeframes(bytes(sound_wave(440, 2.5)))

使用声音软件打开生成的文件,听到嘟的一声。

混合和立体声

为了合成立体声, 我们需要制造左右两个声道的声音,并在每一帧交替播放

代码语言:javascript
复制
import itertools
import math
import wave

FRAMES_PER_SECOND = 44100

def sound_wave(frequency, num_seconds):
    for frame in range(round(num_seconds * FRAMES_PER_SECOND)):
        time = frame / FRAMES_PER_SECOND
        amplitude = math.sin(2 * math.pi * frequency * time)
        yield round((amplitude + 1) / 2 * 255)

left_channel = sound_wave(440, 2.5)
right_channel = sound_wave(480, 2.5)
# 交替播放 两个声道
stereo_frames = itertools.chain(*zip(left_channel, right_channel)) 

with wave.open("output.wav", mode="wb") as wav_file:
    wav_file.setnchannels(2) # 2 channel
    wav_file.setsampwidth(1)
    wav_file.setframerate(FRAMES_PER_SECOND)
    wav_file.writeframes(bytes(stereo_frames))

或者,与其为声波分配单独的声道,不如将它们混合在一起以创建有趣的效果。 混合两种声音的效果等同于将两个声音的振幅相加

代码语言:javascript
复制
import math
import wave

FRAMES_PER_SECOND = 44100

def beat(frequency1, frequency2, num_seconds):
    for frame in range(round(num_seconds * FRAMES_PER_SECOND)):
        time = frame / FRAMES_PER_SECOND
        amplitude1 = math.sin(2 * math.pi * frequency1 * time)
        amplitude2 = math.sin(2 * math.pi * frequency2 * time)
        amplitude = max(-1, min(amplitude1 + amplitude2, 1))
        yield round((amplitude + 1) / 2 * 255)

with wave.open("output.wav", mode="wb") as wav_file:
    wav_file.setnchannels(1)
    wav_file.setsampwidth(1)
    wav_file.setframerate(FRAMES_PER_SECOND)
    wav_file.writeframes(bytes(beat(440, 441, 2.5)))

使用更高的位深度

到目前为止,您一直使用单个字节(8位)来表示每个音频样本,以保持简单。这为您提供了 256 个不同的振幅级别,足以满足您的需求。但是,您迟早会希望提高位深度,以实现更大的动态范围和更好的音质。

切换到更高的位深度时,必须相应地调整缩放字节转换。您可以使用 NumPy 优雅地表达声波方程并有效地处理字节转换:

代码语言:javascript
复制
import numpy as np
import wave

FRAMES_PER_SECOND = 44100

def sound_wave(frequency, num_seconds):
    time = np.arange(0, num_seconds, 1 / FRAMES_PER_SECOND)
    amplitude = np.sin(2 * np.pi * frequency * time)
    return np.clip(
        np.round(amplitude * 32768),
        -32768,
        32767,
    ).astype("<h")

left_channel = sound_wave(440, 2.5)
right_channel = sound_wave(480, 2.5)
stereo_frames = np.dstack((left_channel, right_channel)).flatten()

with wave.open("output.wav", mode="wb") as wav_file:
    wav_file.setnchannels(2)
    wav_file.setsampwidth(2) # 2 bytes == 16 bits 
    wav_file.setframerate(FRAMES_PER_SECOND)
    wav_file.writeframes(stereo_frames)
引用链接

[1] 原文: https://realpython.com/python-wav-files/#visualize-audio-samples-as-a-waveform [2] 代码: https://github.com/realpython/materials/tree/master/python-wav-files

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2024-04-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 一只大鸽子 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 了解WAV文件格式
    • WAV的波形
      • WAV 文件的结构
      • Python的wave模块
        • 写WAV文件
          • 混合和立体声
            • 使用更高的位深度
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档