你好,我是郭震
今天我来总结大模型第二篇,word2vec,它是大模型的根基,一切NLP都会用到它。
Word2Vec 是一种流行的自然语言处理(NLP)工具,它通过将词汇表中的每个单词转换成一个独特的高维空间向量,使得这些词向量能够在数学上表示它们的语义关系。
这种方法对于后续的深度学习模型和NLP的发展具有重大意义,因为它提供了一种有效的方式来表达文本数据,并使得基于文本的应用(如机器翻译、情感分析、信息检索等)的实现变得更加高效和准确。
Word2Vec有两种架构:CBOW(Continuous Bag of Words)和Skip-gram。
假设我们有一个简单的句子:"the quick brown fox jumps over the lazy dog",并且我们选择Skip-gram模型进行词向量的训练。我们可以挑选“fox”作为输入词,上下文窗口大小为2:
通过大量的数据和迭代训练,每个单词的向量都会逐渐调整到能够准确反映它与其他词语的语义关系的位置。
这些向量之后可以用于各种机器学习模型和NLP应用,从而实现更复杂的语言处理任务。接下来大模型第三篇,我会讲解word2vec的神经网络训练代码,欢迎关注。
本文分享自 程序员郭震zhenguo 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!