前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >液体都“智能”可编程了?哈佛新型超材料登Nature,粘度、透明度、弹性可变

液体都“智能”可编程了?哈佛新型超材料登Nature,粘度、透明度、弹性可变

作者头像
脑机接口社区
发布2024-04-19 14:54:54
740
发布2024-04-19 14:54:54
举报
文章被收录于专栏:脑机接口脑机接口
液体都有“智能”、可编程了?

最近,一种被称为“智能"液体的多功能可编程的新型超材料——Metafluid,登上了Nature。

它由哈佛大学SEAS的研究团队研发,据说可自由调节弹性、光学特性、粘度

研究人员表示,有了这些buff属性加成,该流体在编程液压机器人、智能减震器、光学设备中都有巨大的应用潜力。

可编程的“智能液体”

为什么说可用于编程液压机器人等技术?奥秘就在这张图中:

来看研究人员的展示。

研究人员设计了一个抓取器,用空气和水作对照,通过抓取玻璃瓶、鹌鹑蛋、蓝莓,来表现Metafluid对抓取器具有弹性控制能力的原理。

装置如下图,一个注射器从一头注入,另一头的注射器受压力驱动“抓手”:

注入空气量相同的情况下,玻璃瓶刚好能抓稳,鹌鹑蛋和蓝莓直接被压烂。

注入水量相同的情况下,玻璃瓶刚好能抓稳,鹌鹑蛋和蓝莓这边又压力太小碰都碰不到:

下面这个实验,将Metafluid的弹性可压缩更直观的表现了出来,压力影响下,甘油很快就把软管撑起了一个大包,而Metafluid的临界点显然还要靠后一些:

而且它的黏性和流动性也会发生变化:

胶囊屈曲后在流体中的流动现象

当那个压力被移除时,胶囊会弹回到它们的球形状态,由此改变液体粘度和透明度等属性,而胶囊的数量、厚度和大小也会有影响。

微米级胶囊实验中,悬浮液改为硅油。

微米级胶囊悬浮液的压力-体积曲线显示出与厘米级胶囊相似的非线性行为,但由于制造过程中的几何缺陷,微尺度胶囊的Metafluid没有那么明显的平台现象。

<img style="text-align: center;color: rgba(0, 0, 0, 0.9);font-family: mp-quote, -apple-system-font, BlinkMacSystemFont, " helvetica="" neue",="" "pingfang="" sc",="" "hiragino="" sans="" gb",="" "microsoft="" yahei="" ui",="" yahei",="" arial,="" sans-serif;font-size:="" var(--articlefontsize);letter-spacing:="" 0.034em;"="" src="https://mmbiz.qpic.cn/mmbiz_gif/YicUhk5aAGtCagO7edibib5DrtezIma1OzzVL1OI7ibBEdjUskIGCtO2jjxVkxg1RtPBnqMahl6mEibZLld6BLwmSNw/640?wx_fmt=gif&from=appmsg" data-ratio="0.553763440860215" data-w="744" data-imgqrcoded="1" class="rich_pages wxw-img">

球形胶囊在流体中的流动现象

研究人员还研究了胶囊屈曲对Metafluid光学特性的影响。他们使用COMSOL软件进行光线追踪模拟,发现球形和屈曲状态的胶囊显示出不同的散射行为。

实验中,他们测量了通过微米级胶囊悬浮液传输的光功率,并发现在胶囊屈曲时,透射率显著增加。这种变化归因于胶囊屈曲造成的“透镜效应”和胶囊覆盖面积的减少。

此外,研究人员还探讨了胶囊屈曲对Metafluid流变性的影响。他们使用平行板流变仪来测量Metafluid在不同胶囊状态下的粘度。

结果表明,当胶囊处于球形状态时,Metafluid表现出牛顿流体的特性,而当胶囊屈曲时,Metafluid转变为非牛顿剪切稀化流体。

胶囊屈曲后形成聚集体

这种转变归因于胶囊屈曲后形成的聚集体,这些聚集体在高剪切率下会逐渐破裂。

研究人员表示接下来还计划探索这种Metafluid的声学和热力学属性:

这种可扩展、易于生产的Metafluid的应用空间是巨大的。我们的探索还停留在表面。

论文链接:https://www.nature.com/articles/s41586-024-07163-z

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2024-04-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 脑机接口社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档