前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【目标跟踪】ByteTrack详解与代码细节

【目标跟踪】ByteTrack详解与代码细节

作者头像
读书猿
发布2024-04-21 08:37:12
1.7K0
发布2024-04-21 08:37:12
举报
文章被收录于专栏:无人驾驶感知

一、前言

论文地址:https://arxiv.org/pdf/2110.06864.pdf

git地址:https://github.com/ifzhang/ByteTrack

ByteTrack 在是在 2021 年 10 月公开发布的,在ECCV 2022中获奖。它以一种简单的设计方式击败了当时各路“魔改”跟踪器,在 MOT17 数据上首次突破了80 MOTA,并且在单张 V100 中推理速度高达 30 FPS。 我把 ByteTrack 核心思想概括为:

  1. 区分高置信度检测框与低置信度检测框,不同置信度检测框采取不同处理方式。
  2. 保留低置信度检测框,在后续可能会重新确认为 confirm 状态。而不是像传统 MOT 算法选择删除。

ByteTrack 可以有效解决一些遮挡,且能够保持较低的 IDSwith。目标会因为被遮挡检测置信度有所降低,当重新出现时,置信度会有所升高。可以想象:

  1. 当目标逐渐被遮挡时,跟踪目标与低置信度检测目标匹配。
  2. 当目标遮挡逐渐重现时,跟踪目标与高置信度检测目标匹配。

另外,要慎重考虑并处理检测的假阳性,无目标检测出低置信度框的情况。

网上常常把DeepSort与ByteTrack进行比较,关于ByteTrack与 DeepSort,他们各有限制,我们要根据实际情况选用合适的算法。

  • ByteTrack:跟踪效果非常依赖检测的效果。如果检测器的效果好,跟踪也会取得不错的效果。
  • DeepSort:使用了外观描述符和复杂的匹配算法,可能在某些复杂场景下计算量较大,影响实时性能。

二、代码详解

要真正理解通、理解透,啃源码是必不可少的。也不是说非要看懂源码才可以跑通项目,而是看懂之后可以吹牛,也不是为了非要吹牛,至少你自己也有成就感。

废话不多说,直接来!代码详解这一节有点难度。如果一时理解不了,可以先点赞收藏,后续再慢慢啃。。。

方便理解,不按照代码顺序,按照航迹起始到消亡顺序分析。

2.1、新起航迹

只有是高(大于 high_thrash) 置信度框才可以新起航迹。区分高低置信度检测框阈值是 track_thresh = 0.5。但一般high_thresh设定的值要比 track_thresh 大。如high_thresh = 0.6。新起的航迹中 state = Tracked,只第一帧新起航迹 is_activated =True,否则is_activated = false。

代码语言:javascript
复制
	this->state = TrackState::Tracked;
	if (frame_id == 1)
	{
		this->is_activated = true;
	}
	//this->is_activated = true;
	this->frame_id = frame_id;
	this->start_frame = frame_id;

总结:当第一帧时,航迹本身为空时,只有置信度超过 high_thresh 时,才新起始航迹, 此时state = Tracked,is_activated = true。后续只有未匹配的且置信度很高(超过high_thresh )时才新起始航迹,此时state = Tracked,is_activated = false。

2.2、预测

合并is_activated = true 与 state = Lost 航迹。合并后进行预测,预测遵循kalman滤波预测。

每个新的检测信息都会初始化一个 STrack 对象,此对象是否能新起航迹前文已经明确了。源码中的 tlbr 顺序是个坑顺序并非是top,left,bottom,right。实际上是left,top,right,bottom。刚开始我也理解错了,至今我都未明白为什么用这种顺序命名。

代码语言:javascript
复制
	if (objects.boxes.size() > 0)
	{
		for (int i = 0; i < objects.boxes.size(); i++)
		{
			std::vector<float> tlbr_;   // x1,y1,x2,y2
			tlbr_.resize(4);
			tlbr_[0] = objects.boxes[i].x;
			tlbr_[1] = objects.boxes[i].y;
			tlbr_[2] = objects.boxes[i].x + objects.boxes[i].w;
			tlbr_[3] = objects.boxes[i].y + objects.boxes[i].h;
			float score = objects.boxes[i].score;
			STrack strack(STrack::tlbr_to_tlwh(tlbr_), score);
			if (score >= track_thresh)
			{
				detections.push_back(strack);
			}
			else
			{
				detections_low.push_back(strack);
			}
			
		}
	}

tlbr_to_tlwh 会把 x1,y1,x2,y2 转化成 x1,y1,w,h。 新起航迹时,activate 函数中 tlwh_to_xyah ,会把 x1, y1, w, h 转变为 xCenter,yCenter,w / h,h。然后放进 kalman 滤波初始化,初始化其状态与协方差。

代码语言:javascript
复制
void STrack::activate(byte_kalman::KalmanFilter &kalman_filter, int frame_id)
{
     此处省略代码
	auto mc = this->kalman_filter.initiate(xyah_box);
     此处省略代码
}

此时 _motion_mat 为一个 8*8 的矩阵。对应运动状态方程为匀速。

box 状态 mean为:(xCenter,yCenter,w/h,h,Vx,Vy,Vr,Vh)。 预测predict 获得新状态 new_mean = _motion_mat * mean.T

代码语言:javascript
复制
	void KalmanFilter::predict(KAL_MEAN &mean, KAL_COVA &covariance)
	{
		//revise the data;
		DETECTBOX std_pos;
		std_pos << _std_weight_position * mean(3),
			_std_weight_position * mean(3),
			1e-2,
			_std_weight_position * mean(3);
		DETECTBOX std_vel;
		std_vel << _std_weight_velocity * mean(3),
			_std_weight_velocity * mean(3),
			1e-5,
			_std_weight_velocity * mean(3);
		KAL_MEAN tmp;
		tmp.block<1, 4>(0, 0) = std_pos;
		tmp.block<1, 4>(0, 4) = std_vel;
		tmp = tmp.array().square();
		KAL_COVA motion_cov = tmp.asDiagonal();
		KAL_MEAN mean1 = this->_motion_mat * mean.transpose();
		KAL_COVA covariance1 = this->_motion_mat * covariance *(_motion_mat.transpose());
		covariance1 += motion_cov;

		mean = mean1;
		covariance = covariance1;
	}

更新协方差 covariance = _motion_mat * convariance *_motion_mat.T + motion_cov 。 montion_cov为过程噪声矩阵。一般可以保持不变,初始化时可以设定,源码中设定为与 w/h 相关的对角矩阵。

2.3、匹配

这部分是整个论文思想的亮点,也是代码中容易让人混淆的地方。

第一次匹配 预测框与高置信度检测框

  • 预测框:2.2中的跟踪预测框。他们state为Tracked或Lost
  • 高置信度检测框:置信度大于track_thresh中的检测框,文中track_thresh 设定为0.5。

文中采取了计算 iou 进行匹配,预测框与检测框的交并比。 当预测框匹配上时,此时state = Tracked,is_activated = true。 匹配上后需要更新框的状态mean与协方差covariance。

kalman中update:

代码语言:javascript
复制
	KAL_DATA
		KalmanFilter::update(
			const KAL_MEAN &mean,
			const KAL_COVA &covariance,
			const DETECTBOX &measurement)
	{
		KAL_HDATA pa = project(mean, covariance);
		KAL_HMEAN projected_mean = pa.first;    // x,y,r,h
		KAL_HCOVA projected_cov = pa.second;    // _update_mat * covariance * (_update_mat.transpose()) + diag

		Eigen::Matrix<float, 4, 8> B = (covariance * (_update_mat.transpose())).transpose();
		Eigen::Matrix<float, 8, 4> kalman_gain = (projected_cov.llt().solve(B)).transpose(); // eg.8x4
		Eigen::Matrix<float, 1, 4> innovation = measurement - projected_mean; //eg.1x4
		auto tmp = innovation * (kalman_gain.transpose());
		KAL_MEAN new_mean = (mean.array() + tmp.array()).matrix();
		KAL_COVA new_covariance = covariance - kalman_gain * projected_cov*(kalman_gain.transpose());
		return std::make_pair(new_mean, new_covariance);
	}

首先进入project函数,得到 projected_mean 与 projected_con。我们先看 project 进行了什么操作。

代码语言:javascript
复制
	KAL_HDATA KalmanFilter::project(const KAL_MEAN &mean, const KAL_COVA &covariance)
	{
		DETECTBOX std;
		std << _std_weight_position * mean(3), _std_weight_position * mean(3),
			1e-1, _std_weight_position * mean(3);
		KAL_HMEAN mean1 = _update_mat * mean.transpose();
		KAL_HCOVA covariance1 = _update_mat * covariance * (_update_mat.transpose());
		Eigen::Matrix<float, 4, 4> diag = std.asDiagonal();
		diag = diag.array().square().matrix();
		covariance1 += diag;
		return std::make_pair(mean1, covariance1);
	}

mean 1*8矩阵(xCenter, yCenter, w/h, h, Vx, Vy, Vr, Vh) mean1 相当于提取了 mean 中前四个元素。 covariance1 是为了方便后续更新 covariance 一个中间量。 diag 为测量噪声协方差,文中设定与过程噪声矩阵类似。 kalman_gain 为卡尔曼增益,原本需要求 projected_cov 的逆矩阵,再与 B 矩阵相乘求得,这里直接通过解线性方程组的形式求的,省略了一些计算步骤。 new_meannew_covariance 为新的 box 状态与 新的协方差。 预测框与高置信度检测框匹配成功后,无论此时目标 state 为Tracked 还是 Lost,都需更新为Tracked状态,且is_activated 均更新为 true。且都需要进行 kalman 中 update 操作。 一旦目标匹配后:

(1)目标的state 均变为 Tracked

(2)目标的is_activated 均变为true

(3)目标的mean与covariance均需update

第一次未匹配上的预测框与检测框额外缓存。方便后续操作。

第二次匹配 第一次未匹配的预测框与低置信度检测框

  • 第一次未匹配的预测框:第一次未匹配上,state为Tracked的预测框。state为Tracked表明该目标为上一帧匹配上的目标
  • 低置信度检测框:置信度小于track_thresh中的检测框,文中track_thresh = 0.5。

匹配仍然计算iou匹配。匹配上的目标与第一次匹配类似处理。未匹配上的目标会被标记,state后续可能会被修改为Lost。

第三次匹配 is_activated=false 的跟踪框与第一次未匹配的高置信度检测框

  • is_activated=false的跟踪框:上一帧新起的目标,只有上一帧新起的目标is_activate才为false,且此时的框并未做predict处理,也就是说用的上一帧的原始检测框匹配
  • 第一次未匹配的高置信度检测框:置信度大于track_thresh,但是第一次未与状态为is_activated跟踪目标匹配。

如果目标匹配上,则(1)state = Tracked(2)is_activated = true(3)mean 与 covariance 均 update。

如果目标未匹配上,此时状态会变为 Removed,此目标会被永久移除。为了要连续两规避偶尔出现某一帧假阳性,至少需帧高置信度的检测才可被 confirm,有机会参与后续计算。

2.4、结果发布

在发布结果前,需要变更BYTETrack类成员变量的值。

  1. 当 Lost 状态超过 max_time_lost时,state 从 Lost 变为 Removed,此目标被永久遗忘。max_time_lost 构造函数时就已经设定。设定10或者30,根据实际情况调整。
  2. 当成员 state 从 Lost 变为 Tracked 或 Remove d时,this->lost_stracks 需剔除id一致的。
代码语言:javascript
复制
this->lost_stracks = sub_stracks(this->lost_stracks, this->tracked_stracks);
this->lost_stracks = sub_stracks(this->lost_stracks, this->removed_stracks);
remove_duplicate_stracks(resa, resb, this->tracked_stracks, this->lost_stracks);    // 移除 重复路径

当有重复路径时,存活帧数一致,航迹相似。也需剔除此lost航迹。 输出结果:只有当 is_activated = true、state=Tracked 时,才会输出目标

2.5、总结

  1. 检测目标未匹配上时,只有当置信度大于 0.6 才可以新起航迹,其他情况直接被遗忘。此时新起航迹 is_activated 为 false(第一帧不同,第一帧新起航迹 is_activated 默认为 true),当与下一帧置信度大于 0.5 的检测目标在第三次匹配匹配上时(is_activated=false 的目标没资格参与前两次匹配),此时 is_activated 变为 true。此时被标记为 confirm,才有资格被输出。
  2. 跟踪航迹在匹配中成功匹配,此时无论 state = tracked、is_activated=true。可以参与下一帧匹配中的前两次匹配。如果前两次匹配都未成功,则此时 state = Lost,只能参与下一帧第一次匹配,如果连续 max_time_lost 帧在第一次匹配都未匹配上,此时会被遗忘 Removed,永久移除此航迹。

三、流程图

要是看到这里还没看明白,再给你一张我自制的流程图。

四、部署

要是实在看不明白源码,也不想明白,只想在本地跑跑效果看看。那就直接看这里。

环境:linux cmake编译

数据集:https://motchallenge.net/data/MOT17/

git地址:https://github.com/ifzhang/ByteTrack

先 clone 源码下来。链接前文已经给出。c++ 代码在 deploy 文件夹下,博主选用的 ncnn\cpp 文件夹下的代码。下方有 include 与 src 就是全部代码了。

CMakeLists.txt 缺啥链接啥。

mian.cpp 文件 大概思路就是读取 det.txt 文件,保存每一帧的检测结果。给个大概得代码

代码语言:javascript
复制
BYTETracker byteTrack = BYTETracker(10, 30);
for (int fi = 0; fi < maxFrame; fi++) { // maxFrame 帧
    std::vector<ObjectTrack> trackResult;
    byteTrack.update(detFrameData[fi], trackResult);
}

trackResult为自己定义的结果

只需对 BYTETracker.cpp 文件引用进去, 把 update 修改为

代码语言:javascript
复制
void BYTETracker::update(const DetectInfo& objects, std::vector<ObjectTrack>& outTracks)
{
    // 在函数末尾 添加代码
	for (auto i = 0; i < output_stracks.size(); i++)
	{
		outTracks.push_back({
							static_cast<uint>(output_stracks[i].track_id), 
							static_cast<uint>(output_stracks[i].tlbr[0]),
							static_cast<uint>(output_stracks[i].tlbr[1]),
							static_cast<uint>(output_stracks[i].tlbr[2]),
							static_cast<uint>(output_stracks[i].tlbr[3]),
							output_stracks[i].score			
						});
	}
}

这时候已经拿到结果了,后续只需在相应的图片可视化相应结果就大功告成了[喝彩.jpg]。机智的你已经行动起来了。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-04-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、前言
  • 二、代码详解
    • 2.1、新起航迹
      • 2.2、预测
        • 2.3、匹配
          • 2.4、结果发布
            • 2.5、总结
            • 三、流程图
            • 四、部署
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档