异常检测是缺陷检测领域中的重要内容,本文记录运用 STPM 进行异常检测的方法。
MVTec AD
数据集上当前排名第13异常检测问题是一个具有挑战性的任务,通常被定义为针对意外性异常的一类学习问题。本文针对这一问题提出了一种简单而有效的方法,这种方法以其优点在师生框架中得到了实施,但在准确性和效率方面得到了实质性的扩展。在给定一个作为教师的图像分类训练模型的情况下,我们将知识提取到一个具有相同结构的单个学生网络中来学习无异常图像的分布,这种一步转移尽可能地保留了关键线索。此外,我们将多尺度的特征匹配策略集成到框架中,这种层次化的特征匹配使学生网络在更好的监督下能够从特征金字塔中接收到多层次的知识混合,从而允许检测不同规模的异常。两个网络生成的特征金字塔之间的差异可以作为一个评分函数,表明发生异常的概率。由于这样的操作,我们的方法实现了准确和快速的像素级异常检测。非常具有竞争力的结果是在 MVTec 异常检测数据集上提供的,优于最先进的数据集。
文章链接: