前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >弹性伸缩落地实践

弹性伸缩落地实践

作者头像
SRE运维进阶之路
发布2024-04-23 15:17:07
1300
发布2024-04-23 15:17:07
举报
文章被收录于专栏:SRE运维进阶之路

弹性伸缩落地实践

1. 什么是 HPA ?

HPA(Horizontal Pod Autoscaler)是 Kubernetes 中的一种资源自动伸缩机制,用于根据某些指标动态调整 Pod 的副本数量。

2. 什么时候需要 HPA ?

  • 负载波动:当您的应用程序的负载经常发生波动时,HPA 可以自动调整 Pod 的副本数量,以适应负载的变化。例如,对于 Web 应用程序,在高峰期需要更多的副本以处理更多的请求,而在低谷期可以减少副本数量以节省资源。
  • 活动推广:当您的应用程序需要扩展以满足推广活动、新产品发布或突发事件带来的流量增加时,HPA 可以自动增加 Pod 的副本数量,以提供更高的容量和性能。这有助于保持应用程序的可用性和用户体验。
  • 定时弹性:大促期间,设置开始和结束时间,自动弹性扩缩容,不用人工干预,提高效率。
  • 节约成本:通过使用 HPA,您可以根据应用程序的负载需求自动调整 Pod 的副本数量。这可以帮助您避免过度分配资源,节省资源和成本。当负载较低时,HPA 可以减少副本数量,释放不必要的资源。

3. 原生 HPA 的不足

  • 使用率计算基于 resources.requests
  • 不支持定时扩缩容

4. KEDA

采用 KEDA 作为弹性伸缩系统的基座,主要考虑到如下优势点:

  • 功能丰富:内嵌 CPU/Cron/Prom 多种伸缩策略,原生支持缩容至零。
  • 扩展性好:解耦被伸缩对象(支持/scale 子资源即可)和伸缩指标,提供强大的插件机制和抽象接口(scaler + metrics adapter),增加伸缩指标非常便利。
  • 社区强大:CNCF 官方毕业项目,微软和 RedHat 强力支持。

4.1 工作原理

KEDA 监控来自外部指标提供程序系统(例如 Azure Monitor)的指标,然后根据基于指标值的缩放规则进行缩放。它直接与度量提供者系统通信。它作为 Kubernetes Operator 运行,它只是一个 pod 并持续监控。

img

KEDA 将 K8s Core Metrics Pipeline 和 Monitoring Pipeline 处理流程统一化,并内置多种 scaler ( link ),提供开箱即用的弹性策略支持,如常见的基于 CPU/Memory 的弹性策略、定时弹性等:

img

4. 最佳实践

说明: 原生Deployment对象不支持灰度发布策略,所以改用 Argo-Rollout 资源对象,下面示例均采用 Argo-Rollout 演示

4.1 定时弹性

4.1.1 后端模版
代码语言:javascript
复制
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
  name: <appid>-cron
  namespace: <env>
spec:
  minReplicaCount: <origin-replicas>
  scaleTargetRef:
    apiVersion: argoproj.io/v1alpha1
    kind: Rollout
    name: <appid>-default
  triggers:
  - type: cron
    metadata:
      timezone: Asia/Shanghai
      start: 30 * * * *
      end: 45 * * * *
      desiredReplicas: "10"
4.1.2 前端设计

支持三个周期

  • 按天
  • 按星期
  • 自定义 Cron 表达式

img

img

img

4.1.3 消息通知模版
代码语言:javascript
复制
定时HPA动态扩缩容提醒:

AppID:<appid>
归属环境:<env>
容器集群:<cluster>
开始扩容时间:30 11 * * 1
结束扩容时间:30 12 * * 1
容器数量变化:1 --> 2
触发时间:2023-11-13 12:35:16
如有疑问可参考:HPA使用文档,或咨询@SRE客服

4.2 基于资源的弹性

根据 cpu、mem 等资源使用率,自动扩缩容,低负载缩容,减小不必要资源占用,高负载自动扩容,保证应用有足够的资源使用。

4.2.1 后端模版(数据降噪)

说明: 基于 Prometheus 拉取真实资源使用情况,并屏蔽刚启动的 Pod -default 为基线应用,cluster、zone 是 Prometheus remote_write 到 VictoriaMetrics 新增便签,便于区分集群和区域 VictoriaMetrics 是统一汇总、查询层,方便不同集群使用一套数据源

代码语言:javascript
复制
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
  labels:
    scaledobject.keda.sh/name: <appid>
  name: <appid>
  namespace:<env>
spec:
  maxReplicaCount: <max-replicas>
  minReplicaCount: <origin-replicas>
  scaleTargetRef:
    apiVersion: argoproj.io/v1alpha1
    kind: Rollout
    name: <appid>-default
  triggers:
  - metadata:
      metricName: cpu_utilization
      query: sum((sum (rate(container_cpu_usage_seconds_total{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*",container!=""}[1m]))
        by(pod) and on(pod) time() - kube_pod_start_time{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*"}
        > 150 )/( sum (container_spec_cpu_quota{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*",container!=""})
        by(pod) /100000) * 100)
      serverAddress: http://<victoria-select>/select/1/prometheus
      threshold: "80"
    type: prometheus
  - metadata:
      metricName: mem_utilization
      query: sum((sum by(pod) (container_memory_working_set_bytes{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*",container!="",container!="POD"})
        and on(pod) time() -kube_pod_start_time{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*"}>
        150) / sum by(pod) (container_spec_memory_limit_bytes{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*",container!="",container!="POD"})*100)
      serverAddress: http://<victoria-select>/select/1/prometheus
      threshold: "80"
    type: prometheus
4.2.2 前端设计

img

4.2.3 消息通知模版
代码语言:javascript
复制
指标HPA动态扩缩容提醒:
 
AppID:<appid>
归属环境:<env>
容器集群:<cluster>
触发指标:cpu使用率(设定阈值为: 40.0%)
触发指标当前值:77.0%
容器数量变化:1 --> 2
触发时间:2023-11-16 10:38:40
如有疑问可参考:HPA使用文档,或咨询@SRE客服

4.3 基于业务指标的弹性

上生产前,在 UT 环境压测,确定 最大 QPS、最高接受的 RT、最大接受 消息积压数等,监控平台提供接口,根据阀值,自动扩容,自动应对突然流量或压力,保障应用稳定性。

4.3.1 后端模版

说明: QPS 取自 CAT 数据,SRE这边将 CAT 数据使用工具写入到 VictoriaMetrics 中 前端设计、消息通知 和 基于资源的弹性使用的一套模版,都属于基于指标触发的 HPA,这里不再赘述

代码语言:javascript
复制
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
  labels:
    scaledobject.keda.sh/name: <appid>
  name: <appid>
  namespace: <env>
spec:
  maxReplicaCount: <max-replicas>
  minReplicaCount: <origin-replicas>
  scaleTargetRef:
    apiVersion: argoproj.io/v1alpha1
    kind: Rollout
    name: <appid>-default
  triggers:
  - metadata:
      metricName: http_requests_total
      query: sum(cat_url_info{appid="<appid>",type="count",env="<env>",assettype="docker",zone="<zone>",host=~"<appid>-default.*"})/60
      serverAddress: http://<victoria-select>/select/1/prometheus
      threshold: "1000"
    type: prometheus

4.4 补充说明

4.4.1 计算公式

计算公式

检查触发器间隔

指标最新数据间隔

备注

CPU 使用率

所有容器CPU使用率之和/ 容器数量

30s

30s

排除了刚启动的 Pod

MEM 使用率

所有容器MEM使用率之和 / 容器数量

30s

30s

排除了刚启动的 Pod

QPS

所有容器每秒的请求量 / 容器数量

30s

60s

最新数据为 上一分钟 QPS 的平均值

4.4.2 扩缩容默认触发时间

扩容时间

当检测结果大于设置的阈值时,立刻触发扩容,没有稳定窗口。

代码语言:javascript
复制
期望副本数 = ceil[当前副本数 * (当前指标 / 期望指标)]

⚠️ HPA 在计算目标副本数时会有一个10%的波动因子。如果在波动范围内,HPA 并不会调整副本数目。

缩容时间

稳定窗口的时间为 300 秒,满足缩容条件后,连续5分钟持续满足缩容条件,触发缩容

4.5 建立可观测性大盘

后续补充

4.6 注意事项(优雅上下线)

自动扩容大多数是在高并发大流量情况触发,此时如果没有对应的解决方案,就会产生短时间流量有损问题。

这里先说下问题,下篇文章会详细介绍具体场景及解决方案

过程

问题

无损下线

消费者无法及时感知生产者已下线

无损上线

注册太早

无损上线

发布态与运行态未对⻬

无损上线

初始化慢

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-11-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 SRE运维进阶之路 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 弹性伸缩落地实践
    • 1. 什么是 HPA ?
      • 2. 什么时候需要 HPA ?
        • 3. 原生 HPA 的不足
          • 4. KEDA
            • 4.1 工作原理
          • 4. 最佳实践
            • 4.1 定时弹性
            • 4.2 基于资源的弹性
            • 4.3 基于业务指标的弹性
            • 4.4 补充说明
            • 4.5 建立可观测性大盘
            • 4.6 注意事项(优雅上下线)
        相关产品与服务
        容器服务
        腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档