前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >几何非线性| 桁架单元(一)

几何非线性| 桁架单元(一)

作者头像
fem178
发布2024-05-10 18:43:47
740
发布2024-05-10 18:43:47
举报

在上篇几何非线性| 应变张量,得到拉格朗日应变表达式为

\mathbf E = \frac{1}{2}(\mathbf H + \mathbf H^T + \mathbf H^T \mathbf H)

用指标记法

E_{ij}=\frac{1}{2}(\frac{\partial u_i }{\partial X_j}+\frac{\partial u_j }{\partial X_i}+ \frac{\partial u_k }{\partial X_j}\frac{\partial u_k }{\partial X_i}) \quad (1)

对于杆系结构,有

\epsilon_{x}=\frac{\partial u }{\partial x}+\frac{1}{2}(\frac{\partial u }{\partial x})^2+ \frac{1}{2}(\frac{\partial v }{\partial x})^2+\frac{1}{2}(\frac{\partial w }{\partial x})^2 \quad (2)

拉格朗日应变适用于描述几何非线性。

▲图1

如图1所示的桁架单元,局部坐标下的位移插值

\begin{split} u(x) &=[1- \frac{x}{l},0,\frac{x}{l},0]\begin{Bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ \end{Bmatrix} \\ v(x) &=[0,1- \frac{x}{l},0,\frac{x}{l}]\begin{Bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ \end{Bmatrix} \end{split}
\mathbf u = \mathbf N\mathbf q^e \quad (3)

其中,

\mathbf q^e

是单元节点位移矩阵。

\begin{split} \frac{\partial u }{\partial x} &=u^{'}\\ &= \frac{1}{l}\begin{bmatrix} -1 & 0 & 1 & 0 \\ \end{bmatrix} \begin{Bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ \end{Bmatrix} \\ &= \mathbf C \mathbf q^e \end{split}
\begin{split} \frac{\partial v }{\partial x} &=v^{'}\\ &= \frac{1}{l}\begin{bmatrix} 0 & -1 & 0 & 1 \\ \end{bmatrix} \begin{Bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ \end{Bmatrix} \\ &= \mathbf D \mathbf q^e \end{split}

拉格朗日应变

\epsilon = \mathbf C \mathbf q^e + \frac{1}{2} {\mathbf q^e}^T {\mathbf C}^T \mathbf C \mathbf q^e +\frac{1}{2} {\mathbf q^e}^T {\mathbf D}^T \mathbf D \mathbf q^e \quad (4)

虚位移

\delta \mathbf u = \mathbf N \delta \mathbf q^e \quad (5)

虚应变

\begin{split} \delta \epsilon &= \frac{\partial \epsilon }{\partial \mathbf q^e }\delta \mathbf q^e \\ &= \mathbf B(\mathbf q^e) \delta \mathbf q^e \end{split} \quad (6)

这里,(6)用到了变分运算公式

\delta f = \frac{\partial f }{\partial x }\delta x + \frac{\partial f }{\partial y }\delta y

内力虚功为

\begin{split} \delta W_i & = \int_V \delta \boldsymbol {\epsilon}^T \boldsymbol{\sigma} dV \\ & = \delta \mathbf q^{eT} \int_V \mathbf B^T \boldsymbol {\sigma} dV \end{split} \quad (7)

f_i= \int_V \mathbf B^T \boldsymbol {\sigma} dV \quad (8)

\delta W_i = \delta \mathbf q^{eT} f_i \quad (9)

由(6)可得

\begin{split} \bf B &= \frac{\partial \epsilon }{\partial \mathbf q^{e}}\\ &= \frac{\partial \epsilon }{\partial u^{'}}\frac{\partial u^{'} }{\partial \mathbf q^{e}}+ \frac{\partial \epsilon }{\partial v^{'}}\frac{\partial v^{'} }{\partial \mathbf q^{e}}\\ &= (1+u^{'}) \mathbf {C} + v^{'} \mathbf D \\ &= \mathbf C + \mathbf q^{eT} \mathbf C^T\mathbf C + \mathbf q^{eT} \mathbf D^T\mathbf D \end{split} \quad (10)

应力

\begin{split} \sigma &= E(u^{'}+\frac{1}{2}u^{'2} + \frac{1}{2}v^{'2})\\ &= E(\mathbf C \mathbf q^e + \frac{1}{2} {\mathbf q^e}^T {\mathbf C}^T \mathbf C \mathbf q^e +\frac{1}{2} {\mathbf q^e}^T {\mathbf D}^T \mathbf D \mathbf q^e) \end{split} \quad (11)

由(8)(10)(11)可得

f_i= ((1+u^{'}) \mathbf C^T + v^{'} \mathbf D^T )\sigma Al \quad (12)

▲图2

如图2所示的非线性迭代过程,当某一迭代步

i

达到收敛标准时,可以认为处于平衡状态,即

f_i(\mathbf q^i) = f_e(\mathbf q^i) \quad (13)

式中

f_i

是结构内力,

f_e

是外荷载,

\mathbf q^i

i

迭代步时的节点位移。

i+1

迭代步时的内力用一阶泰勒展开

f_i(\mathbf q^{i+1}) \approx f_i(\mathbf q^i) + \frac{\partial f_i }{\partial \mathbf q} \Delta \mathbf q^{i} \quad (14)

由(13)(14)得

\frac{\partial f_i }{\partial \mathbf q} \Delta \mathbf q^{i} = f_e(\mathbf q^{i+1})-f_i(\mathbf u^i) \quad (15)

\mathbf K_T = \frac{\partial f_i }{\partial \mathbf q} \quad (16)

其中,

\mathbf K_T

叫做切线刚度矩阵,(15)可写成

\mathbf K_T \Delta \mathbf q^{i} = f_e(\mathbf q^{i+1})-f_i(\mathbf q^i) \quad (17)
\mathbf K_T

是内力的导数,

f_e(\mathbf q^{i+1})

是新的荷载步下的外荷载。

\begin{split} \mathbf K_T &= \int_V \mathbf B^T \frac{\partial \boldsymbol {\sigma} }{\partial \boldsymbol {\epsilon}} \frac{\partial \boldsymbol {\epsilon}} {\partial \mathbf q} dV + \int_V \frac{\partial \mathbf B^T }{\partial \mathbf q} \boldsymbol {\sigma}dV\\ &= \int_V \mathbf B^T E \mathbf B dV + \int_V \frac{\partial \mathbf B^T }{\partial \mathbf q} \boldsymbol {\sigma}dV\\ &= \mathbf K_{\mathbf q} + \mathbf K_{\boldsymbol {\sigma}}\\ \end{split} \quad (17)

其中

\mathbf K_{\mathbf q}

叫做初始刚度矩阵,

\mathbf K_{\sigma}

叫做几何刚度矩阵。对于桁架单元

\begin{split} \mathbf K_{\mathbf q} &= [(1+u^{'}) \mathbf {C}^T + v^{'} \mathbf D^T][(1+u^{'}) \mathbf {C} + v^{'} \mathbf D]EAl\\ &= [(1+u^{'})^2\mathbf {C}^T\mathbf {C}+ v^{'}(1+u^{'})(\mathbf {D}^T\mathbf {C}+\mathbf {C}^T\mathbf {D} ) + v^{'2}\mathbf {D}^T\mathbf {D}] EAl\\ \end{split} \quad (18)

几何刚度矩阵

\begin{split} \mathbf K_{\boldsymbol {\sigma}} &= \frac{\partial }{\partial u^{'} }(1+u^{'}) \mathbf {C}^T \frac{\partial u^{'} }{\partial \mathbf q } +\frac{\partial }{\partial v^{'} }(v^{'}) \mathbf {D}^T \frac{\partial v^{'} }{\partial \mathbf q } \boldsymbol {\sigma}Al \\ &= (\mathbf {C}^T\mathbf {C}+\mathbf {D}^T\mathbf {D}) \boldsymbol {\sigma}Al \end{split} \quad (19)

其中

\begin{split} \mathbf {C}^T\mathbf {C} &= \frac{1}{l^2} \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \\ \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 & 0 \\ \end{bmatrix} \\ &= \frac{1}{l^2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} \\ \end{split}

同理

\begin{split} \mathbf {D}^T\mathbf {D} &= \frac{1}{l^2} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ \end{bmatrix} \\ \end{split}

最终得到局部坐标下的切线刚度矩阵为

\begin{split} \mathbf K_T &= \frac{EA}{l} \begin{bmatrix} (1+u^{'})^2 & (v^{'}+v^{'}u^{'}) & -(1+u^{'})^2 & -(v^{'}+v^{'}u^{'}) \\ (v^{'}+v^{'}u^{'}) & v^{'2} & -(v^{'}+v^{'}u^{'}) & -v^{'2} \\ -(1+u^{'})^2 & -(v^{'}+v^{'}u^{'}) & (1+u^{'})^2 & (v^{'}+v^{'}u^{'}) \\ -(v^{'}+v^{'}u^{'}) & -v^{'2} & (v^{'}+v^{'}u^{'}) & v^{'2} \\ \end{bmatrix} \\ &\quad + \frac{\sigma A}{l} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ \end{bmatrix} \\ \end{split} \quad (20)

局部坐标和整体坐标下的节点位移转换关系

\mathbf q^e = \mathbf T \mathbf q^g

整体坐标下的切线刚度矩阵

\mathbf K_T^g = \mathbf T^T \mathbf K_T\mathbf T
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2024-05-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数值分析与有限元编程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档