前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >PR曲线、ROC曲线、AUC能干个啥

PR曲线、ROC曲线、AUC能干个啥

原创
作者头像
用户3570225
发布2024-05-19 19:37:19
1540
发布2024-05-19 19:37:19
举报
文章被收录于专栏:机器学习基础

二分类的性能指标:PR曲线、ROC曲线、AUC的基本相关概念

PR 曲线

PR曲线实则是以precision(精准率)和recall(召回率)这两个变量而做出的曲线,其中recall为横坐标,precision为纵坐标。

一条PR曲线要对应一个阈值。通过选择合适的阈值,比如50%,对样本进行划分,概率大于50%的就认为是正例,小于50%的就是负例,从而计算相应的精准率和召回率。

如果一个学习器的P-R曲线被另一个学习器的P-R曲线完全包住,则可断言后者的性能优于前者。

我们还可以根据曲线下方的面积大小来进行比较,但更常用的是平衡点或者是F1值。平衡点(BEP)是P=R时的取值,如果这个值较大,则说明学习器的性能较好。而F1=2×P×R/(P+R),同样,F1值越大,我们可以认为该学习器的性能较好。

度量

精确率、查准率 P:预测为正例中预测正确的

召回率、查全率 R:真实结果为正例对应的判断结果(判断正例判断对的TP+判断负例判断错的FN)中判断为正例的

真正例率(TPR): TPR=TP/(TP+FN) 与召回率相同

假正例率(FPR): FPR=FP/(TN+FP) 真实结果为负例对应的判断结果中判断为正例的

混淆矩阵

代码语言:python
代码运行次数:0
复制
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve,roc_auc_score,average_precision_score,auc
代码语言:python
代码运行次数:0
复制
def draw_pr(confidence_scores,data_labels):
    plt.figure()
    plt.title('PR Curve')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.grid()
    
#     精准率、召回率、阈值
    precision,recall,thresholds = precision_recall_curve(data_labels,confidence_scores)
    AP = average_precision_score(data_labels,confidence_scores)
    
    plt.plot(recall,precision,label='pr_curve(AP=%0.2f)'%AP)
    plt.legend()
    plt.show()

ROC曲线(Receiver Operating Characteristic) 受试者工作特征曲线

ROC曲线实则是以假正例率 (FPR)和 真正例率(TPR)这两个为变量而做出的曲线,其中 FPR 为横坐标, TPR 为纵坐标。

分类器可以给出每个样本数据为正例的概率,我们设定一个阈值,当概率大于阈值则预测结果为正例,否则为负例。此时,通过计算我们可以得到一个(TPR,FPR)对,即图像上的一个点。通过不断调整阈值,就得到若干个点,从而画出一条曲线。

为什么使用ROC曲线

ROC有一个很好的特性,当测试集中的正负样本分布变化时,ROC曲线能够保持不变。

实际情况中经常出现类不平衡的现象,即负样本比真样本多很多的情况(或者相反)

如何调整这个阈值呢?

一般来说,分类器会对一批数据(20个)的每个样本给出一个是正例的概率。对给出的概率进行排序,然后依次使用概率作为阈值,这样就得到了20组(FPR, TPR)。

也可以使用未经softmax(或其他处理的)的概率值

AUC(Area Under Curve)

ROC下的面积,0,1,通常在0.5,1之间。

ROC曲线能直观体现分类器的性能,但是需要一个数值,直接判定分类器的性能好坏。

代码语言:python
代码运行次数:0
复制
def draw_roc(confidence_scores,data_labels):
    plt.figure()
    plt.grid()
    plt.title('ROC Curve')
    plt.xlabel('FPR')
    plt.ylabel('TPR')
    fpr,tpr,thresholds = roc_auc_score(data_labels,confidence_scores)
    auc = auc(fpr,tpr)
    plt.plot(fpr,tpr,label='roc_curve(AUC=%0.2f)'%auc)
    plt.legend()
    plt.show()
代码语言:python
代码运行次数:0
复制
# 正样本的置信度,即模型识别成1的概率
confidence_scores = np.array([0.9, 0.78, 0.6, 0.46, 0.4, 0.37, 0.2, 0.16])
# 真实标签
data_labels = np.array([1,1,0,1,0,0 ,1,1])
draw_roc(confidence_scores,data_labels)
draw_pr(confidence_scores,data_labels)
代码语言:python
代码运行次数:0
复制
# 整合了两个函数的画图部分,可以用draw_plt函数处理
def draw_plt(title,xlabel,ylabel,x,y,label_name):
    plt.figure()
    plt.grid()
    plt.title(title)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.plot(x,y,label=label_name)
    plt.legend()
    plt.show()

TODO

  • 后期加上数据和图片
  • 结合具体二分类案例进一步分析

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • PR 曲线
    • 度量
      • 混淆矩阵
        • 为什么使用ROC曲线
        • 如何调整这个阈值呢?
    • ROC曲线(Receiver Operating Characteristic) 受试者工作特征曲线
    • AUC(Area Under Curve)
    • TODO
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档