前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >认识文本预处理

认识文本预处理

作者头像
@小森
发布2024-06-02 09:00:26
660
发布2024-06-02 09:00:26
举报
文章被收录于专栏:xiaosen

文本预处理及其作用: 文本语料在输送给模型前一般需要一系列的预处理工作, 才能符合模型输入的要求, 如: 将文本转化成模型需要的张量, 规范张量的尺寸等, 而且科学的文本预处理环节还将有效指导模型超参数的选择, 提升模型的评估指标 

  • 文本处理的基本方法
  • 文本张量表示方法
  • 文本语料的数据分析
  • 文本特征处理
  • 数据增强方法

文本张量表示

将一段文本使用张量进行表示,其中一般将词汇为表示成向量,称作词向量,再由各个词向量按顺序组成矩阵形成文本表示

我喜欢自然语言处理:

  • 我 -> [0.1, 0.2, 0.3]
  • 喜欢 -> [0.4, 0.5, 0.6]
  • 自然语言处理 -> [0.7, 0.8, 0.9]

[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]

文本张量表示的方法:

  • one-hot编码
  • Word2vec
  • Word Embedding
one-hot词向量表示

又称独热编码,将每个词表示成具有n个元素的向量,这个词向量中只有一个元素是1,其他元素都是0,不同词汇元素为0的位置不同,其中n的大小是整个语料中不同词汇的总数

代码语言:javascript
复制
[[1, 0, 0],  # 我
2 [0, 1, 0],  # 喜欢
3 [0, 0, 1]]  # 自然语言处理

onehot编码实现 

代码语言:javascript
复制
import joblib
# 导入keras中的词汇映射器Tokenizer
from keras.preprocessing.text import Tokenizer
# 假定vocab为语料集所有不同词汇集合
vocab = {"周杰伦", "陈奕迅", "王力宏", "李宗盛", "吴亦凡", "鹿晗"}
# 实例化一个词汇映射器对象
t = Tokenizer(num_words=None, char_level=False)
# 使用映射器拟合现有文本数据
t.fit_on_texts(vocab)

for token in vocab:
    zero_list = [0]*len(vocab)
    # 使用映射器转化现有文本数据, 每个词汇对应从1开始的自然数
    # 返回样式如: [[2]], 取出其中的数字需要使用[0][0]
    token_index = t.texts_to_sequences([token])[0][0] - 1
    zero_list[token_index] = 1
    print(token, "的one-hot编码为:", zero_list)

# 使用joblib工具保存映射器, 以便之后使用
tokenizer_path = "./Tokenizer"
joblib.dump(t, tokenizer_path)

onehot编码器的使用

代码语言:javascript
复制
t = joblib.load(tokenizer_path)

# 编码token为"李宗盛"
token = "李宗盛"
# 使用t获得token_index
token_index = t.texts_to_sequences([token])[0][0] - 1
# 初始化一个zero_list
zero_list = [0]*len(vocab)
# 令zero_List的对应索引为1
zero_list[token_index] = 1
print(token, "的one-hot编码为:", zero_list) 

李宗盛 的one-hot编码为: [1, 0, 0, 0, 0, 0]

one-hot编码的优劣势:

  • 优势:操作简单,容易理解.
  • 劣势:完全割裂了词与词之间的联系,而且在大语料集下,每个向量的长度过大,占据大量内存.
  • 正因为one-hot编码明显的劣势,这种编码方式被应用的地方越来越少,取而代之的是稠密向量的表示方法word2vec和word embedding
word2vec模型

word2vec是一种流行的将词汇表示成向量的无监督训练方法, 该过程将构建神经网络模型, 将网络参数作为词汇的向量表示, 它包含CBOW和skipgram两种训练模式。

CBOW(Continuous bag of words)模式:

  • 给定一段用于训练的文本语料, 再选定某段长度(窗口)作为研究对象, 使用上下文词汇预测目标词汇 
  • 图中窗口大小为9, 使用前后4个词汇对目标词汇进行预测

假设我们给定的训练语料只有一句话: Hope can set you free (愿你自由成长),窗口大小为3,因此模型的第一个训练样本来自Hope can set,因为是CBOW模式,所以将使用Hope和set作为输入,can作为输出,在模型训练时, Hope,can,set等词汇都使用它们的one-hot编码

skipgram模式: 

给定一段用于训练的文本语料, 再选定某段长度(窗口)作为研究对象, 使用目标词汇预测上下文词汇

word2vec的训练和使用
代码语言:javascript
复制
$ head -10 data/enwik9

# 原始数据将输出很多包含XML/HTML格式的内容, 这些内容并不是我们需要的
<mediawiki xmlns="http://www.mediawiki.org/xml/export-0.3/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.mediawiki.org/xml/export-0.3/ http://www.mediawiki.org/xml/export-0.3.xsd" version="0.3" xml:lang="en">
  <siteinfo>
    <sitename>Wikipedia</sitename>
    <base>http://en.wikipedia.org/wiki/Main_Page</base>
    <generator>MediaWiki 1.6alpha</generator>
    <case>first-letter</case>
      <namespaces>
      <namespace key="-2">Media</namespace>
      <namespace key="-1">Special</namespace>
      <namespace key="0" />

训练词向量

代码语言:javascript
复制
>>> import fasttext
# 使用fasttext的train_unsupervised(无监督训练方法)进行词向量的训练
# 它的参数是数据集的持久化文件路径'data/fil9'

# 注意,该行代码执行耗时很长
>>> model1 = fasttext.train_unsupervised('data/fil9') 

# 可以使用以下代码加载已经训练好的模型
>>> model = fasttext.load_model("data/fil9.bin")


# 有效训练词汇量为124M, 共218316个单词
Read 124M words
Number of words:  218316
Number of labels: 0
Progress: 100.0% words/sec/thread:   53996 lr:  0.000000 loss:  0.734999 ETA:   0h 0m
 查看单词对应的词向量
代码语言:javascript
复制
>>> model.get_word_vector("the")

array([-0.03087516,  0.09221972,  0.17660329,  0.17308897,  0.12863874,
        0.13912526, -0.09851588,  0.00739991,  0.37038437, -0.00845221,
        ...
       -0.21184735, -0.05048715, -0.34571868,  0.23765688,  0.23726143],
      dtype=float32)
模型超参数设定
代码语言:javascript
复制
>>> model = fasttext.train_unsupervised('data/fil9', "cbow", dim=300, epoch=1, lr=0.1, thread=8)

Read 124M words
Number of words:  218316
Number of labels: 0
Progress: 100.0% words/sec/thread:   49523 lr:  0.000000 avg.loss:  1.777205 ETA:   0h 0m 0s
模型效果检验
代码语言:javascript
复制
>>> model.get_nearest_neighbors('sports')

[(0.8414610624313354, 'sportsnet'), (0.8134572505950928, 'sport'), (0.8100415468215942, 'sportscars'), (0.8021156787872314, 'sportsground'), (0.7889881134033203, 'sportswomen'), (0.7863013744354248, 'sportsplex'), (0.7786710262298584, 'sporty'), (0.7696356177330017, 'sportscar'), (0.7619683146476746, 'sportswear'), (0.7600985765457153, 'sportin')]


# 查找"音乐"的邻近单词, 我们可以发现与音乐有关的词汇.
>>> model.get_nearest_neighbors('music')

[(0.8908010125160217, 'emusic'), (0.8464668393135071, 'musicmoz'), (0.8444250822067261, 'musics'), (0.8113634586334229, 'allmusic'), (0.8106718063354492, 'musices'), (0.8049437999725342, 'musicam'), (0.8004694581031799, 'musicom'), (0.7952923774719238, 'muchmusic'), (0.7852965593338013, 'musicweb'), (0.7767147421836853, 'musico')]

# 查找"小狗"的邻近单词, 我们可以发现与小狗有关的词汇.
>>> model.get_nearest_neighbors('dog')
模型的保存与重加载
代码语言:javascript
复制
>>> model.save_model("fil9.bin")

# 使用fasttext.load_model加载模型
>>> model = fasttext.load_model("fil9.bin")
>>> model.get_word_vector("the")

小结 

文本张量表示:

  • 将一段文本使用张量进行表示,其中一般将词汇为表示成向量,称作词向量,再由各个词向量按顺序组成矩阵形成文本表示

文本张量表示的作用:

  • 将文本表示成张量(矩阵)形式,能够使语言文本可以作为计算机处理程序的输入,进行接下来一系列的解析工作 

文本张量表示的方法:

  • one-hot编码
  • Word2vec
  • Word Embedding

one-hot词向量表示:

  • 又称独热编码,将每个词表示成具有n个元素的向量,这个词向量中只有一个元素是1,其他元素都是0,不同词汇元素为0的位置不同,其中n的大小是整个语料中不同词汇的总数

word2vec:

  • 是一种流行的将词汇表示成向量的无监督训练方法, 该过程将构建神经网络模型, 将网络参数作为词汇的向量表示, 它包含CBOW和skipgram两种训练模式。 
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-06-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 文本张量表示
    • one-hot词向量表示
      • word2vec模型
        • word2vec的训练和使用
          •  查看单词对应的词向量
          • 模型超参数设定
          • 模型效果检验
          • 模型的保存与重加载
      • 小结 
      相关产品与服务
      NLP 服务
      NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档