拷贝只会放生在两个场景中:拷贝构造函数以及赋值运算符重载,因此想要让一个类禁止拷贝, 只需让该类不能调用拷贝构造函数以及赋值运算符重载即可。
将拷贝构造函数与赋值运算符重载只声明不定义,并且将其访问权限设置为私有即可。
class CopyBan
{
public:
CopyBan()
{}
private:
//拷贝构造函数声明
CopyBan(const CopyBan& cb);
//赋值运算符重载声明
CopyBan& operator=(const CopyBan& cb);
};
原因:
C++11扩展delete的用法,delete除了释放new申请的资源外,如果在默认成员函数后跟上 = delete,表示让编译器删除掉该默认成员函数。
class CopyBan
{
public:
CopyBan()
{}
private:
//拷贝构造函数声明
CopyBan(const CopyBan& cb) = delete;
//赋值运算符重载声明
CopyBan& operator=(const CopyBan& cb) = delete;
};
实现方式:
class HeapOnly
{
public:
static HeapOnly* CreateObject()
{
return new HeapOnly;
}
private:
HeapOnly() {}
// C++98
// 1.只声明,不实现。因为实现可能会很麻烦,而你本身不需要
// 2.声明成私有
//HeapOnly(const HeapOnly&);
// C++11
HeapOnly(const HeapOnly&) = delete;
};
方法一:同上将构造函数私有化,然后设计静态方法创建对象返回即可。
class StackOnly
{
public:
static StackOnly CreateObj()
{
return StackOnly();
}
// 禁掉operator new可以把下面用new 调用拷贝构造申请对象给禁掉
// StackOnly obj = StackOnly::CreateObj();
// StackOnly* ptr3 = new StackOnly(obj);
void* operator new(size_t size) = delete;
void operator delete(void* p) = delete;
private:
StackOnly()
:_a(0)
{}
private:
int _a;
};
// C++98中构造函数私有化,派生类中调不到基类的构造函数。则无法继承
class NonInherit
{
public:
static NonInherit GetInstance()
{
return NonInherit();
}
private:
NonInherit()
{}
};
//派生类
class B : public NonInherit
{};
final关键字,final修饰类,表示该类不能被继承。
class NonInherit final
{}
设计模式:
设计模式(Design Pattern)是一套被反复使用、多数人知晓的、经过分类的、代码设计经验的 总结。为什么会产生设计模式这样的东西呢?就像人类历史发展会产生兵法。最开始部落之间打 仗时都是人拼人的对砍。后来春秋战国时期,七国之间经常打仗,就发现打仗也是有套路的,后 来孙子就总结出了《孙子兵法》。孙子兵法也是类似。
使用设计模式的目的:为了代码可重用性、让代码更容易被他人理解、保证代码可靠性。 设计模 式使代码编写真正工程化;设计模式是软件工程的基石脉络,如同大厦的结构一样。
单例模式:
一个类只能创建一个对象,即单例模式,该模式可以保证系统中该类只有一个实例,并提供一个 访问它的全局访问点,该实例被所有程序模块共享。比如在某个服务器程序中,该服务器的配置 信息存放在一个文件中,这些配置数据由一个单例对象统一读取,然后服务进程中的其他对象再 通过这个单例对象获取这些配置信息,这种方式简化了在复杂环境下的配置管理。
单例模式有两种实现模式:
class Singleton
{
public:
//获取单例对象接口
static Singleton* GetInstance()
{
return &m_instance;
}
private:
Singleton()
{}
//禁止使用拷贝构造
Singleton(const Singleton& s) = delete;
//禁止使用赋值运算符重载
Singleton& operator=(const Singleton& s) = delete;
//保证单例对象在静态区且只有一个
static Singleton m_instance;//单例对象
};
//在程序入口之前就完成单例对象初始化
Singleton Singleton::m_instance;
如果这个单例对象在多线程高并发环境下频繁使用,性能要求较高,那么显然使用饿汉模式来避 免资源竞争,提高响应速度更好。
优点:
缺点:
如果单例对象构造十分耗时或者占用很多资源,比如加载插件啊, 初始化网络连接啊,读取 文件啊等等,而有可能该对象程序运行时不会用到,那么也要在程序一开始就进行初始化, 就会导致程序启动时非常的缓慢。 所以这种情况使用懒汉模式(延迟加载)更好。
class Singleton
{
public:
static Singleton* GetInstance()
{
// 注意这里一定要使用Double-Check的方式加锁,才能保证效率和线程安全
if (nullptr == m_pInstance)
{
m_mtx.lock();
if (nullptr == m_pInstance)
{
m_pInstance = new Singleton();
}
m_mtx.unlock();
}
return m_pInstance;
}
// 实现一个内嵌垃圾回收类
class CGarbo
{
public:
~CGarbo()
{
if (Singleton::m_pInstance)
delete Singleton::m_pInstance;
}
};
// 定义一个静态成员变量,程序结束时,系统会自动调用它的析构函数从而释放单例对象
static CGarbo Garbo;
private:
// 构造函数私有
Singleton() {};
// 防拷贝
Singleton(Singleton const&);
Singleton& operator=(Singleton const&);
static Singleton* m_pInstance; // 单例对象指针
static mutex m_mtx; //互斥锁
};
Singleton* Singleton::m_pInstance = nullptr;
Singleton::CGarbo Garbo;
mutex Singleton::m_mtx;
优点:
缺点:
感谢各位大佬支持!!!
互三啦!!!