前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Signac|成年小鼠大脑 单细胞ATAC分析(2)

Signac|成年小鼠大脑 单细胞ATAC分析(2)

作者头像
数据科学工厂
发布2024-06-18 14:17:24
730
发布2024-06-18 14:17:24
举报
文章被收录于专栏:数据科学(冷冻工厂)

引言

在本教程中,我们将探讨由10x Genomics公司提供的成年小鼠大脑细胞的单细胞ATAC-seq数据集。本教程中使用的所有相关文件均可在10x Genomics官方网站上获取。

本教程复现了之前在人类外周血单核细胞(PBMC)的Signac入门教程中执行的命令。我们通过在不同的系统上进行相同的分析,来展示其性能以及对不同组织类型的适用性,并提供了一个来自不同物种的示例。

创建基因活动矩阵

代码语言:javascript
复制
# compute gene activities
gene.activities <- GeneActivity(brain)

# add the gene activity matrix to the Seurat object as a new assay
brain[['RNA']] <- CreateAssayObject(counts = gene.activities)
brain <- NormalizeData(
  object = brain,
  assay = 'RNA',
  normalization.method = 'LogNormalize',
  scale.factor = median(brain$nCount_RNA)
)

DefaultAssay(brain) <- 'RNA'
FeaturePlot(
  object = brain,
  features = c('Sst','Pvalb',"Gad2","Neurod6","Rorb","Syt6"),
  pt.size = 0.1,
  max.cutoff = 'q95',
  ncol = 3
)

与 scRNA-seq 数据整合

为了更好地解读单细胞ATAC-seq数据,我们可以根据来自相同生物体系(即成年小鼠大脑)的单细胞RNA测序(scRNA-seq)实验结果,

代码语言:javascript
复制
# Load the pre-processed scRNA-seq data
allen_rna <- readRDS("../vignette_data/allen_brain.rds")
allen_rna <- UpdateSeuratObject(allen_rna)
allen_rna <- FindVariableFeatures(
  object = allen_rna,
  nfeatures = 5000
)

transfer.anchors <- FindTransferAnchors(
  reference = allen_rna,
  query = brain,
  reduction = 'cca',
  dims = 1:30
)

predicted.labels <- TransferData(
  anchorset = transfer.anchors,
  refdata = allen_rna$subclass,
  weight.reduction = brain[['lsi']],
  dims = 2:30
)

brain <- AddMetaData(object = brain, metadata = predicted.labels)

plot1 <- DimPlot(allen_rna, group.by = 'subclass', label = TRUE, repel = TRUE) + NoLegend() + ggtitle('scRNA-seq')
plot2 <- DimPlot(brain, group.by = 'predicted.id', label = TRUE, repel = TRUE) + NoLegend() + ggtitle('scATAC-seq')
plot1 + plot2

您可以看到基于 RNA 的分类与 UMAP 可视化一致,仅根据 ATAC-seq 数据计算。

查找簇之间可差异访问的峰值

在这里,我们发现皮层不同层的兴奋性神经元之间的可访问区域存在差异。

代码语言:javascript
复制
#switch back to working with peaks instead of gene activities
DefaultAssay(brain) <- 'peaks'
Idents(brain) <- "predicted.id"

da_peaks <- FindMarkers(
  object = brain,
  ident.1 = c("L2/3 IT"), 
  ident.2 = c("L4", "L5 IT", "L6 IT"),
  test.use = 'LR',
  latent.vars = 'nCount_peaks'
)

head(da_peaks)
##                                  p_val avg_log2FC pct.1 pct.2    p_val_adj
## chr4-86523678-86525285    3.266647e-69   3.691294 0.426 0.037 5.135267e-64
## chr2-118700082-118704897  8.553383e-61   2.092487 0.648 0.182 1.344617e-55
## chr15-87605281-87607659   3.864918e-55   2.450827 0.499 0.097 6.075767e-50
## chr10-107751762-107753240 1.534485e-52   1.801355 0.632 0.192 2.412257e-47
## chr4-101303935-101305131  5.949521e-51   3.427059 0.356 0.031 9.352825e-46
## chr13-69329933-69331707   1.604991e-49  -2.254722 0.140 0.435 2.523094e-44

plot1 <- VlnPlot(
  object = brain,
  features = rownames(da_peaks)[1],
  pt.size = 0.1,
  idents = c("L4","L5 IT","L2/3 IT")
)
plot2 <- FeaturePlot(
  object = brain,
  features = rownames(da_peaks)[1],
  pt.size = 0.1,
  max.cutoff = 'q95'
)
plot1 | plot2
代码语言:javascript
复制
open_l23 <- rownames(da_peaks[da_peaks$avg_log2FC > 3, ])
open_l456 <- rownames(da_peaks[da_peaks$avg_log2FC < 3, ])
closest_l23 <- ClosestFeature(brain, open_l23)
closest_l456 <- ClosestFeature(brain, open_l456)
head(closest_l23)

##                                 tx_id gene_name            gene_id
## ENSMUST00000151481 ENSMUST00000151481   Fam154a ENSMUSG00000028492
## ENSMUST00000131864 ENSMUST00000131864   Gm12796 ENSMUSG00000085721
## ENSMUST00000139527 ENSMUST00000139527     Yipf1 ENSMUSG00000057375
## ENSMUSE00001329193 ENSMUST00000185379   Gm29414 ENSMUSG00000099392
## ENSMUSE00000514286 ENSMUST00000077353      Hmbs ENSMUSG00000032126
## ENSMUST00000161356 ENSMUST00000161356      Reln ENSMUSG00000042453
##                      gene_biotype type           closest_region
## ENSMUST00000151481 protein_coding  gap   chr4-86487920-86538964
## ENSMUST00000131864        lincRNA  gap chr4-101292521-101318425
## ENSMUST00000139527 protein_coding  cds chr4-107345009-107345191
## ENSMUSE00001329193        lincRNA exon   chr1-25026581-25026779
## ENSMUSE00000514286 protein_coding exon   chr9-44344010-44344228
## ENSMUST00000161356 protein_coding  gap   chr5-21891568-21895988
##                                query_region distance
## ENSMUST00000151481   chr4-86523678-86525285        0
## ENSMUST00000131864 chr4-101303935-101305131        0
## ENSMUST00000139527 chr4-107344435-107345145        0
## ENSMUSE00001329193   chr1-25008426-25009334    17246
## ENSMUSE00000514286   chr9-44345250-44346015     1021
## ENSMUST00000161356   chr5-21894051-21894682        0

head(closest_l456)
##                                 tx_id gene_name            gene_id
## ENSMUST00000104937 ENSMUST00000104937   Ankrd63 ENSMUSG00000078137
## ENSMUSE00000647021 ENSMUST00000068088   Fam19a5 ENSMUSG00000054863
## ENSMUST00000165341 ENSMUST00000165341     Otogl ENSMUSG00000091455
## ENSMUST00000044081 ENSMUST00000044081     Papd7 ENSMUSG00000034575
## ENSMUST00000070198 ENSMUST00000070198    Ppp3ca ENSMUSG00000028161
## ENSMUST00000084628 ENSMUST00000084628    Hs3st2 ENSMUSG00000046321
##                      gene_biotype type            closest_region
## ENSMUST00000104937 protein_coding  cds  chr2-118702266-118703438
## ENSMUSE00000647021 protein_coding exon   chr15-87625230-87625486
## ENSMUST00000165341 protein_coding  utr chr10-107762223-107762309
## ENSMUST00000044081 protein_coding  utr   chr13-69497959-69499915
## ENSMUST00000070198 protein_coding  utr  chr3-136935226-136937727
## ENSMUST00000084628 protein_coding  cds  chr7-121392730-121393214
##                                 query_region distance
## ENSMUST00000104937  chr2-118700082-118704897        0
## ENSMUSE00000647021   chr15-87605281-87607659    17570
## ENSMUST00000165341 chr10-107751762-107753240     8982
## ENSMUST00000044081   chr13-69329933-69331707   166251
## ENSMUST00000070198  chr3-137056475-137058371   118747
## ENSMUST00000084628  chr7-121391215-121395519        0

绘制基因组区域

我们同样可以利用CoveragePlot()函数,根据不同的细胞聚类、细胞类型或对象中存储的其他任何元数据信息,为特定的基因组区域绘制出分组的覆盖度图。这些覆盖度图实际上是伪批量的可访问性轨迹图,通过将同一组内所有细胞的信号进行平均,从而在视觉上展示出特定区域内DNA的可访问性情况。

代码语言:javascript
复制
# show cell types with at least 50 cells
idents.plot <- names(which(table(Idents(brain)) > 50))

CoveragePlot(
  object = brain,
  region = c("Neurod6", "Gad2"),
  idents = idents.plot,
  extend.upstream = 1000,
  extend.downstream = 1000,
  ncol = 1
)
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-06-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 冷冻工厂 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 引言
  • 创建基因活动矩阵
  • 与 scRNA-seq 数据整合
  • 查找簇之间可差异访问的峰值
  • 绘制基因组区域
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档