前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【C++航海王:追寻罗杰的编程之路】哈希的应用——位图 | 布隆过滤器

【C++航海王:追寻罗杰的编程之路】哈希的应用——位图 | 布隆过滤器

作者头像
枫叶丹
发布2024-07-15 08:02:32
400
发布2024-07-15 08:02:32
举报
文章被收录于专栏:C++C++

1 -> 位图

1.1 -> 位图的概念

位图的概念:所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据是否存在的。

下面是一道面试题:

给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。

  1. 遍历,时间复杂度O(N)。
  2. 排序(O(NlogN)),利用二分查找:logN。
  3. 位图解决:数据是否在给定的整形数据中,结果是在或者不在,刚好是两种状态,那么可以使用一个二进制比特位来代表数据是否存在的信息,如果二进制比特位为1,代表存在,为0代表不存在。比如:
代码语言:javascript
复制
#define _CRT_SECURE_NO_WARNINGS 1

#include <iostream>
#include <vector>
using namespace std;

class bitset
{
public:
	bitset(size_t bitCount)
		: _bit((bitCount >> 5) + 1), _bitCount(bitCount)
	{}

	// 将which比特位置1
	void set(size_t which)
	{
		if (which > _bitCount)
			return;

		size_t index = (which >> 5);
		size_t pos = which % 32;
		_bit[index] |= (1 << pos);
	}

	// 将which比特位置0
	void reset(size_t which)
	{
		if (which > _bitCount)
			return;

		size_t index = (which >> 5);
		size_t pos = which % 32;
		_bit[index] &= ~(1 << pos);
	}

	// 检测位图中which是否为1
	bool test(size_t which)
	{
		if (which > _bitCount)
			return false;

		size_t index = (which >> 5);
		size_t pos = which % 32;

		return _bit[index] & (1 << pos);
	}
	// 获取位图中比特位的总个数
	size_t size()const 
	{ 
		return _bitCount; 
	}

	// 位图中比特为1的个数
	size_t Count()const
	{
		int bitCnttable[256] = {
   0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2,
   3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3,
   3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3,
   4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4,
   3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5,
   6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4,
   4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5,
   6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5,
   3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3,
   4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6,
   6, 7, 6, 7, 7, 8 };

		size_t size = _bit.size();
		size_t count = 0;
		for (size_t i = 0; i < size; ++i)
		{
			int value = _bit[i];
			int j = 0;
			while (j < sizeof(_bit[0]))
			{
				unsigned char c = value;
				count += bitCnttable[c];
				++j;
				value >>= 8;
			}
		}
		return count;
	}

private:
	vector<int> _bit;
	size_t _bitCount;
};

1.2 -> 位图的应用

  1. 快速查找某个数据是否在一个集合中。
  2. 排序 + 去重。
  3. 求两个集合的交集、并集等。
  4. 操作系统中磁盘块标记。

2 -> 布隆过滤器

2.1 -> 布隆过滤器的提出

我们在使用新闻客户端看新闻时,它会不停地给我们推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。那么问题来了,新闻客户端推荐系统是如何实现推送去重的呢?用服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录。如何快速查找呢?

  1. 用哈希表存储用户记录,缺点:浪费空间。
  2. 用位图存储用户记录,缺点:位图一般只能处理整形,如果内容编号是字符串,就无法处理了。
  3. 将哈希与位图结合,即布隆过滤器。

2.2 -> 布隆过滤器的概念

布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你“某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方法不仅可以提升查询效率,也可以节省大量的内存空间。

2.3 -> 布隆过滤器的插入

向布隆过滤器中插入:“baidu”。

代码语言:javascript
复制
#define _CRT_SECURE_NO_WARNINGS 1

#include <iostream>
using namespace std;

struct BKDRHash
{
	size_t operator()(const string& s)
	{
		// BKDR
		size_t value = 0;
		for (auto ch : s)
		{
			value *= 31;
			value += ch;
		}

		return value;
	}
};

struct APHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 0;
		for (long i = 0; i < s.size(); i++)
		{
			if ((i & 1) == 0)
			{
				hash ^= ((hash << 7) ^ s[i] ^ (hash >> 3));
			}
			else
			{
				hash ^= (~((hash << 11) ^ s[i] ^ (hash >> 5)));
			}
		}

		return hash;
	}
};

struct DJBHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 5381;
		for (auto ch : s)
		{
			hash += (hash << 5) + ch;
		}

		return hash;
	}
};

template<size_t N,
	size_t X = 5,
	class K = string,
	class HashFunc1 = BKDRHash,
	class HashFunc2 = APHash,
	class HashFunc3 = DJBHash>
	class BloomFilter
{

public:
	void Set(const K& key)
	{
		size_t len = X * N;
		size_t index1 = HashFunc1()(key) % len;
		size_t index2 = HashFunc2()(key) % len;
		size_t index3 = HashFunc3()(key) % len;

		/* cout << index1 << endl;
		cout << index2 << endl;
		cout << index3 << endl<<endl;*/

		_bs.set(index1);
		_bs.set(index2);
		_bs.set(index3);
	}

	bool Test(const K& key)
	{
		size_t len = X * N;
		size_t index1 = HashFunc1()(key) % len;
		if (_bs.test(index1) == false)
			return false;

		size_t index2 = HashFunc2()(key) % len;
		if (_bs.test(index2) == false)
			return false;

		size_t index3 = HashFunc3()(key) % len;
		if (_bs.test(index3) == false)
			return false;

		return true; // 存在误判的
	}

	// 不支持删除,删除可能会影响其他值。
	void Reset(const K& key);

private:
	bitset<X* N> _bs;
};

2.4 -> 布隆过滤器的查找

布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,因此被映射到的位置的比特位一定是1。所以可以按照以下方式进行查找:分别计算每个哈希值对应的比特位置存储的是否为0,只要有一个为0,代表该元素一定不在哈希表中,否则可能在哈希表中。

注意:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可能存在,因为有些哈希函数存在一定的误判。

比如:在布隆过滤器中查找“alibaba”时,假设3个哈希函数计算的哈希值为:1、3、7,刚好和其他元素的比特位重叠,此时布隆过滤器告诉该元素存在,但实际该元素是不存在的。

2.5 -> 布隆过滤器的删除

布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。

比如:删除上图中的“tencent”元素,如果直接将该元素所对应的二进制比特位置0,“baidu”元素也被删除了。因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠。

一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。

缺陷:

  1. 无法确认元素是否真正在布隆过滤器中。
  2. 存在计数回绕。

2.6 -> 布隆过滤器的优点

  1. 增加和查询元素的时间复杂度为O(k),(k为哈希函数的个数,一般比较小),与数据量大小无关。
  2. 哈希函数相互之间没有关系,方便硬件并行运算。
  3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大的优势。
  4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有很大的空间优势。
  5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能。
  6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算。

2.7 -> 布隆过滤器的缺陷

  1. 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再建立一个白名单,存储可能误判的数据)。
  2. 不能获取元素本身。
  3. 一般情况下不能从布隆过滤器中删除元素。
  4. 如果采用计数方式删除,可能会存在计数回绕问题。
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-07-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.1 -> 位图的概念
  • 1.2 -> 位图的应用
  • 2 -> 布隆过滤器
    • 2.1 -> 布隆过滤器的提出
      • 2.2 -> 布隆过滤器的概念
        • 2.3 -> 布隆过滤器的插入
          • 2.4 -> 布隆过滤器的查找
            • 2.5 -> 布隆过滤器的删除
              • 2.6 -> 布隆过滤器的优点
                • 2.7 -> 布隆过滤器的缺陷
                相关产品与服务
                对象存储
                对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档