前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >基于知识图谱构建的检索增强生成-GraphRAG(尝鲜篇)

基于知识图谱构建的检索增强生成-GraphRAG(尝鲜篇)

原创
作者头像
languageX
修改于 2024-07-28 06:05:27
修改于 2024-07-28 06:05:27
1.9K53
代码可运行
举报
文章被收录于专栏:大语言模型大语言模型
运行总次数:3
代码可运行

之前专栏有介绍过LLM应用的利器RAG,通过它的实现原理,我们可以看出它有个很大的缺点就是在检索过程中只是对切片片段进行召回,所以也只能回答局部文档问题,无法回答知识库全局问题。

微软前段时间开源了GraphRAG(Graph-based Retrieval Augmented Generation)是在通用RAG基础上结合了知识图谱。GraphRAG的主要流程:利用LLM从知识库中提取实体以及实体关系;利用LLM对实体联系进行聚类,生成社区摘要;在回答用户问题时利用LLM结合社区摘进行回答。所以基于GraphRAG的问答是提供了更丰富的上下文和关系信息,提升生成RAG的检索生成效果,整个pipline如下图所示。

paper: https://arxiv.org/pdf/2404.16130

code: https://github.com/microsoft/graphrag

本文就手把手教你如何使用GraphRAG~

1. 搭建环境

GraphRAG的环境非常简单,安装graphrag包就行。

代码语言:bash
AI代码解释
复制
conda create -n graphrag python=3.10
git clone https://github.com/microsoft/graphrag.git
pip install graphrag

2. 数据和配置

2.1 准备知识库

知识图谱我马上能想到的最好的例子就是红楼梦人物关系图了。所以可以让大模型生成一份红楼梦四大家族简介和关键人物介绍,然后保存到txt就可以。当然你也可以直接用demo数据或者业务数据(需要注意的是GraphRAG整个流程是非常消耗token的)。

我们创建目录htmtest/input,将txt文件放入目录

代码语言:bash
AI代码解释
复制
mkdir -p ./hlmtest/input 
2.2 配置环境变量

再GraphRAG的根目录执行如下命令

代码语言:bash
AI代码解释
复制
python -m graphrag.index --init --root ./hlmtest

会得到默认的.env和setting.yaml文件,结构如下:

(1)配置API_KEY

.env 文件中是配置你的openai_key

代码语言:bash
AI代码解释
复制
GRAPHRAG_API_KEY=your_openai_key
(2)配置项目中参数

settings.yaml 文件配置主要是配置模型,切片,prompt等项目参数设置。

比如LLM模块,我使用的azure账号,配置如下:

代码语言:bash
AI代码解释
复制
llm:
  api_key: ${GRAPHRAG_API_KEY}
  type:  azure_openai_chat # or openai_chat
  model: model_name
  model_supports_json: ture # recommended if this is available for your model.
  # max_tokens: 4000
  # request_timeout: 180.0
  api_base: your_api_base
  api_version: your_api_version
  deployment_name:  your_deployment_name

比如文档格式和切片规则模块,这里我使用默认值。通过参数可以看出输入模块不管是文件支持还是切片都有很大优化空间。

代码语言:bash
AI代码解释
复制
chunks:
  size: 300
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents
    
input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

再看实体抽取等模块,我们可以看到自动生成了几个prompt。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  # 注意这里可以根据你实际数据去定义自己的实体类型以及修改对应的prompt示例
  entity_types: [organization,person,geo,event]
  max_gleanings: 0

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 0

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

其中几个prompt大家可以重点看看,大致就能了解大模型生成的实体,关系和report的输出结构了。

我们看看实体抽取的prompt:

代码语言:python
代码运行次数:3
运行
AI代码解释
复制

-Goal-
Given a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.

-Steps-
1. Identify all entities. For each identified entity, extract the following information:
- entity_name: Name of the entity, capitalized
- entity_type: One of the following types: [{entity_types}]
- entity_description: Comprehensive description of the entity's attributes and activities
Format each entity as ("entity"{tuple_delimiter}<entity_name>{tuple_delimiter}<entity_type>{tuple_delimiter}<entity_description>)

2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.
For each pair of related entities, extract the following information:
- source_entity: name of the source entity, as identified in step 1
- target_entity: name of the target entity, as identified in step 1
- relationship_description: explanation as to why you think the source entity and the target entity are related to each other
- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity
 Format each relationship as ("relationship"{tuple_delimiter}<source_entity>{tuple_delimiter}<target_entity>{tuple_delimiter}<relationship_description>{tuple_delimiter}<relationship_strength>)

3. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **{record_delimiter}** as the list delimiter.

4. When finished, output {completion_delimiter}

######################
-Examples-
######################
Example 1:

Entity_types: [person, technology, mission, organization, location]
Text:
while Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.

Then Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. ��If this tech can be understood..." Taylor said, their voice quieter, "It could change the game for us. For all of us.��

The underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.

It was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths
################
Output:
("entity"{tuple_delimiter}"Alex"{tuple_delimiter}"person"{tuple_delimiter}"Alex is a character who experiences frustration and is observant of the dynamics among other characters."){record_delimiter}
("entity"{tuple_delimiter}"Taylor"{tuple_delimiter}"person"{tuple_delimiter}"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective."){record_delimiter}
("entity"{tuple_delimiter}"Jordan"{tuple_delimiter}"person"{tuple_delimiter}"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device."){record_delimiter}
("entity"{tuple_delimiter}"Cruz"{tuple_delimiter}"person"{tuple_delimiter}"Cruz is associated with a vision of control and order, influencing the dynamics among other characters."){record_delimiter}
("entity"{tuple_delimiter}"The Device"{tuple_delimiter}"technology"{tuple_delimiter}"The Device is central to the story, with potential game-changing implications, and is revered by Taylor."){record_delimiter}
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"Taylor"{tuple_delimiter}"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device."{tuple_delimiter}7){record_delimiter}
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"Jordan"{tuple_delimiter}"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision."{tuple_delimiter}6){record_delimiter}
("relationship"{tuple_delimiter}"Taylor"{tuple_delimiter}"Jordan"{tuple_delimiter}"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce."{tuple_delimiter}8){record_delimiter}
("relationship"{tuple_delimiter}"Jordan"{tuple_delimiter}"Cruz"{tuple_delimiter}"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order."{tuple_delimiter}5){record_delimiter}
("relationship"{tuple_delimiter}"Taylor"{tuple_delimiter}"The Device"{tuple_delimiter}"Taylor shows reverence towards the device, indicating its importance and potential impact."{tuple_delimiter}9){completion_delimiter}
#############################
Example 2:

Entity_types: [person, technology, mission, organization, location]
Text:
They were no longer mere operatives; they had become guardians of a threshold, keepers of a message from a realm beyond stars and stripes. This elevation in their mission could not be shackled by regulations and established protocols��it demanded a new perspective, a new resolve.

Tension threaded through the dialogue of beeps and static as communications with Washington buzzed in the background. The team stood, a portentous air enveloping them. It was clear that the decisions they made in the ensuing hours could redefine humanity's place in the cosmos or condemn them to ignorance and potential peril.

Their connection to the stars solidified, the group moved to address the crystallizing warning, shifting from passive recipients to active participants. Mercer's latter instincts gained precedence�� the team's mandate had evolved, no longer solely to observe and report but to interact and prepare. A metamorphosis had begun, and Operation: Dulce hummed with the newfound frequency of their daring, a tone set not by the earthly
#############
Output:
("entity"{tuple_delimiter}"Washington"{tuple_delimiter}"location"{tuple_delimiter}"Washington is a location where communications are being received, indicating its importance in the decision-making process."){record_delimiter}
("entity"{tuple_delimiter}"Operation: Dulce"{tuple_delimiter}"mission"{tuple_delimiter}"Operation: Dulce is described as a mission that has evolved to interact and prepare, indicating a significant shift in objectives and activities."){record_delimiter}
("entity"{tuple_delimiter}"The team"{tuple_delimiter}"organization"{tuple_delimiter}"The team is portrayed as a group of individuals who have transitioned from passive observers to active participants in a mission, showing a dynamic change in their role."){record_delimiter}
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Washington"{tuple_delimiter}"The team receives communications from Washington, which influences their decision-making process."{tuple_delimiter}7){record_delimiter}
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Operation: Dulce"{tuple_delimiter}"The team is directly involved in Operation: Dulce, executing its evolved objectives and activities."{tuple_delimiter}9){completion_delimiter}
#############################
Example 3:

Entity_types: [person, role, technology, organization, event, location, concept]
Text:
their voice slicing through the buzz of activity. "Control may be an illusion when facing an intelligence that literally writes its own rules," they stated stoically, casting a watchful eye over the flurry of data.

"It's like it's learning to communicate," offered Sam Rivera from a nearby interface, their youthful energy boding a mix of awe and anxiety. "This gives talking to strangers' a whole new meaning."

Alex surveyed his team��each face a study in concentration, determination, and not a small measure of trepidation. "This might well be our first contact," he acknowledged, "And we need to be ready for whatever answers back."

Together, they stood on the edge of the unknown, forging humanity's response to a message from the heavens. The ensuing silence was palpable��a collective introspection about their role in this grand cosmic play, one that could rewrite human history.

The encrypted dialogue continued to unfold, its intricate patterns showing an almost uncanny anticipation
#############
Output:
("entity"{tuple_delimiter}"Sam Rivera"{tuple_delimiter}"person"{tuple_delimiter}"Sam Rivera is a member of a team working on communicating with an unknown intelligence, showing a mix of awe and anxiety."){record_delimiter}
("entity"{tuple_delimiter}"Alex"{tuple_delimiter}"person"{tuple_delimiter}"Alex is the leader of a team attempting first contact with an unknown intelligence, acknowledging the significance of their task."){record_delimiter}
("entity"{tuple_delimiter}"Control"{tuple_delimiter}"concept"{tuple_delimiter}"Control refers to the ability to manage or govern, which is challenged by an intelligence that writes its own rules."){record_delimiter}
("entity"{tuple_delimiter}"Intelligence"{tuple_delimiter}"concept"{tuple_delimiter}"Intelligence here refers to an unknown entity capable of writing its own rules and learning to communicate."){record_delimiter}
("entity"{tuple_delimiter}"First Contact"{tuple_delimiter}"event"{tuple_delimiter}"First Contact is the potential initial communication between humanity and an unknown intelligence."){record_delimiter}
("entity"{tuple_delimiter}"Humanity's Response"{tuple_delimiter}"event"{tuple_delimiter}"Humanity's Response is the collective action taken by Alex's team in response to a message from an unknown intelligence."){record_delimiter}
("relationship"{tuple_delimiter}"Sam Rivera"{tuple_delimiter}"Intelligence"{tuple_delimiter}"Sam Rivera is directly involved in the process of learning to communicate with the unknown intelligence."{tuple_delimiter}9){record_delimiter}
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"First Contact"{tuple_delimiter}"Alex leads the team that might be making the First Contact with the unknown intelligence."{tuple_delimiter}10){record_delimiter}
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"Humanity's Response"{tuple_delimiter}"Alex and his team are the key figures in Humanity's Response to the unknown intelligence."{tuple_delimiter}8){record_delimiter}
("relationship"{tuple_delimiter}"Control"{tuple_delimiter}"Intelligence"{tuple_delimiter}"The concept of Control is challenged by the Intelligence that writes its own rules."{tuple_delimiter}7){completion_delimiter}
#############################
-Real Data-
######################
Entity_types: {entity_types}
Text: {input_text}
######################
Output:

大家务必基于自己的数据去调整prompt,否则生成的效果会很差。如果数据集是中文,可以尝试将prompt

3 运行GraphRAG的pipline

设置好env和setting后,我们就可以执行了~

再次提醒:整个过程LLM调用次数非常多,大家对token消耗现有个心里预期。有网友使用185K个字符的文档,使用GPT-4o,消耗大概7美元。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
python -m graphrag.index --root ./hlmtest

执行成功会出现如下日志,可以看到工作流流程和进度:

我们看下运行后输出了什么

indexing-engine.log 这个文件记录了详细的pipline日志信息。

再看看生成的create_final_relationships和create_final_community_reports。这里我使用的是gpt3.5,prompt改为中文(否则效果很差)。

4 基于知识问答

基于以上pipline后,我们生成了实体图,关系图,社区摘要等中间文件。下面就基于graphrag进行问答。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
python -m graphrag.query --root ./hlmtest --method global "贾元春和贾宝玉的关系?"
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
python -m graphrag.query --root ./hlmtest --method global "红楼梦中金陵十二钗有哪些人物?"

以上就是使用GraphRAG进行问答的整个过程~大家可以先尝鲜体验,后面有时间,我们仔细分析源码,来看看每个步骤的实现逻辑~

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
5 条评论
热度
最新
请问用到的红楼梦人物关系.txt可以提供一下吗,求!
请问用到的红楼梦人物关系.txt可以提供一下吗,求!
回复回复点赞举报
辛苦请教一下,graphrag构建索引时执行到create_final_entities报错终止,log内的报错信息显示"Error code: 400 - {'error': {'code': 'InvalidParameter', 'message': 'One or more parameters specified in the request are not valid. Request id: 021724747960210a602', 'param': 'encoding_format', 'type': 'BadRequest'}}",请问这是什么原因造成的呢?
辛苦请教一下,graphrag构建索引时执行到create_final_entities报错终止,log内的报错信息显示"Error code: 400 - {'error': {'code': 'InvalidParameter', 'message': 'One or more parameters specified in the request are not valid. Request id: 021724747960210a602', 'param': 'encoding_format', 'type': 'BadRequest'}}",请问这是什么原因造成的呢?
33点赞举报
你是不是使用本地的embedding模型,不是openai的key?看着像是调用embedding时候报错。
你是不是使用本地的embedding模型,不是openai的key?看着像是调用embedding时候报错。
回复回复点赞举报
调的豆包的embedding
调的豆包的embedding
回复回复点赞举报
查看全部3条回复
推荐阅读
编辑精选文章
换一批
GraphRAG失效?快用Prompt Tune适配文档的领域和语言
我最近在arXiv上下载RAG相关的论文,几百篇的论文,肉眼去一一观看实在是太难了。因此打算通过强大的GraphRAG索引这些文章的摘要,我希望GraphRAG能够根据实体提取和社群分区,能够告知我RAG的研究脉络和大概的研究领域。然而效果并不理想,提取出的实体和问答实在难以恭维,是GraphRAG失效了吗?今天让我们通过实验测试默认prompt索引与查询,并使用Prompt Tune对输入文档领域进行适配后的索引与查询,但是否会更好呢,让我们一探究竟。本文分为5小结,如何下载论文摘要、默认prompt索引查询与可视化,使用prompt tune进行领域适配索引查询和可视化,总结全文与不足。
AgenticAI
2025/03/18
920
GraphRAG失效?快用Prompt Tune适配文档的领域和语言
GraphRAG手调Prompt提取自定义实体
GraphRAG在使用Prompt-Tune根据领域自动生成的实体总是不理想怎么办?这个时候就需要手动调整啦,当然我们还需要借助ChatGPT类的助手帮助我们生成一些Example。
AgenticAI
2025/03/18
1160
GraphRAG手调Prompt提取自定义实体
75% 成本和时间削减:优化微软 GraphRAG 索引的秘密
书接上回《实战微软新一代RAG:GraphRAG强大的全局理解能力,碾压朴素RAG?》,想必大家都知道我最近在测试GraphRAG,由于其惊人的理解能力,我一直在探索。当然遇到的问题也比较多,比如community_reports不生效,tokens per minute和requests per minute不生效,全局搜索经常JSONDecodeError,以及高昂的成本和时间。这4个问题,我提交了4个PR去修复。本篇将围绕这4个问题和PR说明,最主要的是如何大幅降低成本和时间进行说明,修改很简单,但是精度上升了。
AgenticAI
2025/03/18
840
75% 成本和时间削减:优化微软 GraphRAG 索引的秘密
NLTK vs LLM:GraphRAG实体提取方法深度大比
书接上文《75% 成本和时间削减:优化微软 GraphRAG 索引的秘密》,我们在修复一些bug和缩减大量成本后,使得GraphRAG更易于使用。其实在缩减成本上,GraphaRAG还有一个隐藏的功能,那就是使用NLTK来提取实体。NLTK,全称Natural Language Toolkit(自然语言工具包),是一个开源的Python库,主要用于自然语言处理(NLP)的研究和开发。这篇文章主要讨论了如何通过使用NLTK和LLM两种不同的方法来进行实体提取,以优化和比较在GraphRAG中的应用效果。
AgenticAI
2025/03/18
830
NLTK vs LLM:GraphRAG实体提取方法深度大比
解密prompt系列41. GraphRAG真的是Silver Bullet?
这一章我们介绍GraphRAG范式,算着时间也是该到图谱了,NLP每一轮新模型出来后,往往都是先研究微调,然后各种预训练方案,接着琢磨数据,各种主动学习半监督,弱监督,无监督,再之后就到图谱和对抗学习~
风雨中的小七
2024/10/24
3800
解密prompt系列41. GraphRAG真的是Silver Bullet?
Graph RAG 生成图谱的关键Prompt
上一篇就Graph RAG主要作用、生成流程进行了简要描述,如果我们想要在系统层面实现知识图谱的生成,当然仅有理论还是不够的,需要进一步看一下各个步骤具体的做法是怎样的。
神采奕奕
2024/08/16
2600
小白也能看懂,手把手教你启动graphrag-server
最近我基于微软GraphRAG,编写了一个支持极速流式输出的Web服务graphrag-server,还支持可访问的参考文档链接。然而很多粉丝说之前的视频不够傻瓜,今天我就带你手把手安装graphrag-server,并配合桌面应用使用,告别使用命令行傻等结果。极速流式输入的演示效果,可参考上一个视频《不要再傻等了GraphRAG查询极速流式输出,秒速回复》。本文分为安装、配置、索引、启动web服务和配置桌面应用。可视化请参考前文《喂饭教程!全网首发Neo4J可视化GraphRAG索引》,脚本已经内置在graphrag-server的script中。
AgenticAI
2025/03/18
1470
小白也能看懂,手把手教你启动graphrag-server
实战微软新一代RAG:GraphRAG强大的全局理解能力,碾压朴素RAG?
微软近日开源了新一代RAG框架GraphRAG[1],以解决当前RAG在大型语料库上全局理解问题。当前RAG主要聚焦于局部检索能力,即根据查询语句在向量库中匹配部分知识,然后通过大型语言模型合成这些检索到的信息,生成一个自然流畅的回答。相信大部分同学看过《仙逆》这部小说,如果你问王林这一生有几个相好?如果让RAG来回答,它能回答出来吗?而GraphRAG通过两个阶段构建基于图的文本索引:首先从源文档中推导出实体知识图谱,然后为所有紧密相关的实体群体生成社区摘要。给定一个问题,每个社区摘要用于生成部分回应,然后将所有部分回应总结为最终用户的回答。通过这样的方法,那么我们再问王林这一生有多少女人,是不是会容易的多了呢?下图来自百度百科-王林词条[2]。本文将先首先概述RAG和GraphRAG,然后介绍如何安装、如何使用GraphRAG对《仙逆》进行索引和回答测试。
AgenticAI
2025/03/18
1910
实战微软新一代RAG:GraphRAG强大的全局理解能力,碾压朴素RAG?
实战使用 GraphRAG 索引整本《西游记》,解锁黑悟空通关路
最近游戏科学的《黑神话:悟空》爆火,然而我发现为啥好多妖怪妖精我都记不得了呢?怎么和我小时候看的动画版西游记不一样呢?亢金星君是谁?白衣秀士是谁?广智?金池长老?老了呀,都不记得了。本文尝试用 GraphRAG 索引整本《西游记》,带你重温经典。本文分为手调实体、索引、可视化、问答几个部分。另外,我们也会测试一下 GraphRAG 可否识别孙行者、行者孙、者行孙和孙悟空是否为同一个人。
AgenticAI
2025/03/18
470
实战使用 GraphRAG 索引整本《西游记》,解锁黑悟空通关路
GitHub Models
The first step in developing generative AI applications is to choose a model. How to choose a model is the key. This includes
JusterZhu
2025/01/23
810
GitHub Models
使用Neo4j和LangChain实现“Local to Global”的GraphRAG
GraphRAG是一种基于知识图谱的检索增强技术。它使用多来源数据构建图模型的知识表达,将实体和关系之间的联系以图的形式展示,然后利用大语言模型进行检索增强。这种方法能更高效准确地检索相关信息,并为LLM生成响应提供更好的上下文。微软和领英的技术人员已经科学的验证了这种技术相较于基线 RAG 的优势,并发表了相关论文。
马超的博客
2024/07/15
3.1K0
使用Neo4j和LangChain实现“Local to Global”的GraphRAG
GraphRAG/LightRAG/Kotaemon从0开始构建中医方剂大模型知识图谱问答
今天看到这样一篇文章,文章的标题是【关于AI技术的思考,是 提高 or 降低 | 开发者的职业天花板】,文章的链接:https://cloud.tencent.com/developer/article/2466467 文章很有作者个人的思考,有些见解比较独到,让我深有所思。
zhouzhou的奇妙编程
2024/12/09
1.6K3
知识图谱
一般我们选用的是neo4j。下载地址:https://we-yun.com/doc/neo4j-chs/
算法之名
2025/02/06
840
知识图谱
将微软GraphRAG输出到Neo4J并使用Langchain或LlamaIndex实现本地和全局检索
微软的 GraphRAG 实现最近获得了极大的关注。在上一篇博文中,我讨论了如何构建图形,并探讨了研究论文中强调的一些创新方面。从高层次来看,GraphRAG 库的输入是包含各种信息的源文件。这些文档使用大语言模型(LLM)进行处理,以提取文档中出现的实体及其关系的结构化信息。提取的结构化信息随后被用于构建知识图谱。
AgenticAI
2025/03/18
1640
将微软GraphRAG输出到Neo4J并使用Langchain或LlamaIndex实现本地和全局检索
利用知识图谱提高 RAG 应用的准确性
在 RAG 应用中使用 Neo4j 和 LangChain 构建和检索知识图谱信息的实用指南
大数据杂货铺
2024/04/02
7670
利用知识图谱提高 RAG 应用的准确性
微调大型语言模型进行命名实体识别
大型语言模型的目标是理解和生成与人类语言类似的文本。它们经过大规模的训练,能够对输入的文本进行分析,并生成符合语法和语境的回复。这种模型可以用于各种任务,包括问答系统、对话机器人、文本生成、翻译等。
deephub
2024/03/20
3480
微调大型语言模型进行命名实体识别
7 种查询策略教你用好 Graph RAG 探索知识图谱
近来 NebulaGraph 社区在 LLM + Graph 和 Graph RAG 领域进行了深入的探索和分享。在 LlamaIndex 和 LangChain 中,NebulaGraph 引入了一系列知识图谱和图存储工具,支持编排、图谱与大模型间的交互。之前,NebulaGraph 布道师古思为作为这项工作的主要贡献者已向大家详细介绍了如何构建图谱、Text2Cypher、GraphRAG、GraphIndex 等方法,并展示了相关示例与效果。
NebulaGraph
2023/12/06
2.9K0
7 种查询策略教你用好 Graph RAG 探索知识图谱
使用GraphRAG+LangChain+Ollama:LLaMa 3.1跑通知识图谱与向量数据库集成(Neo4j)
我将向你展示如何使用 LLama 3.1(一个本地运行的模型)来执行GraphRAG操作,总共就50号代码。。。
AI进修生
2024/12/02
7780
使用GraphRAG+LangChain+Ollama:LLaMa 3.1跑通知识图谱与向量数据库集成(Neo4j)
NebulaGraph7 种查询(关键词、向量、混合检索),Graph RAG 探索知识图谱
如果你熟悉知识图谱和图数据库 NebulaGraph,可以直接跳到 “RAG 具体实现” 章节。如果你不熟悉 NebulaGraph,请继续往下读。
汀丶人工智能
2024/01/20
3.1K0
NebulaGraph7 种查询(关键词、向量、混合检索),Graph RAG 探索知识图谱
【AI落地应用实战】构建基于知识图谱的知识问答系统
今天给大家分享的这篇好事文章:《腾讯IMA:AI智能工作台的革命性创新》,腾讯IMA的特点是能够把很多文章保存到知识库中,让你一下子就可以拥有一个专题的文章库。 这一点其实很适合去钻研某一个问题。这个知识库其实就是利用了混元大模型+RAG的架构,在借助于混元大模型的帮助,同时不需要微调的情况下,我们就可以搭建属于自己的知识库。 简单来说就是通过大模型LLM的能力,在其基础上引入外部的知识库数据,这样大模型AI在回答问题的时候更加的精确。
中杯可乐多加冰
2024/11/14
3300
推荐阅读
相关推荐
GraphRAG失效?快用Prompt Tune适配文档的领域和语言
更多 >
领券
社区富文本编辑器全新改版!诚邀体验~
全新交互,全新视觉,新增快捷键、悬浮工具栏、高亮块等功能并同时优化现有功能,全面提升创作效率和体验
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验