前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【机器学习】GLM-4V:图片识别多模态大模型(MLLs)初探

【机器学习】GLM-4V:图片识别多模态大模型(MLLs)初探

作者头像
LDG_AGI
发布2024-08-13 14:34:54
1640
发布2024-08-13 14:34:54
举报
文章被收录于专栏:人工智能极简应用

一、引言

之前在我的第5篇热榜第一🏆文章【机器学习】Qwen-VL:基于FastAPI私有化部署你的第一个AI多模态大模型中对Qwen-VL如何基于FastAPI封装私有化接口进行了讲述,评论区有人问到如何基于GLM-4V进行私有化接口部署。那今天我们就基于FastAPI,讲述如何封装GLM-4V私有化接口。

OpenAI兼容的API接口(OpenAI-API-compatible):是个很重要的接口规范,由大模型王者OpenAI制定,简单来说就是接口名、传参方式、参数格式统一仿照OpenAI的接口方式,这样可以降低使用接口的学习与改造,做到多厂商、多模型兼容。

  • DIFY平台:自定义的接口要求复合OpenAI兼容API规范才能使用
  • vLLM、OllamaXinference等开源推理框架:接口均参照OpenAI兼容API规范

本文基于FastAPI简单实现了一个遵照OpenAI兼容接口的Qwen-VL服务端和客户端接口,用于交流学习,如有问题与建议欢迎大家留言指正!

二、GLM-4V 介绍

2.1 GLM-4V 概述

GLM-4是清华智谱AI的第4代产品,重点强调的是ALL Tools工具调用能力,并于2024年6月5日开源了GLM-4-9B版本,包括GLM-4-9B、GLM-4-9B-Chat、GLM-4-9B-Chat-1M以及对应支持1120x1120像素的多模态模型GLM-4V-9B。今天重点对GLM-4V-9B进行介绍,并给出基于FastAPI私有化部署方式。

2.2 GLM-4V 原理

该模型采用了与CogVLM2相似的架构设计,能够处理高达1120 x 1120分辨率的输入,并通过降采样技术有效减少了token的开销。为了减小部署与计算开销,GLM-4V-9B没有引入额外的视觉专家模块,采用了直接混合文本和图片数据的方式进行训练,在保持文本性能的同时提升多模态能力,模型架构如图:

2.3 GLM-4V 模型结构

通过之前的文章中讲述的使用transformers查看model结构的方法,查看模型结构如下,包含以下几个部分

  • GLMTransformer:其中包含40个GLMBlock,每个里面包含self_attention、post_attention_layernorm以及mlp模块
  • EVA2CLIPModel:包含patch_embedding和transformer模块,transformer模块包含63个TransformerLayer,每个TransformerLayer中包含input_layernorm、attention、mlp以及post_attention_layernorm模块
  • GLU(Gated Linear Unit)机制:这是一种激活函数,它通过一个门控机制来控制信息流,GLU通常由两部分组成:一个线性变换和一个门控线性变换,用于增加模型的表达能力。
代码语言:javascript
复制
ChatGLMForConditionalGeneration(
  (transformer): ChatGLMModel(
    (embedding): Embedding(
      (word_embeddings): Embedding(151552, 4096)
    )
    (rotary_pos_emb): RotaryEmbedding()
    (encoder): GLMTransformer(
      (layers): ModuleList(
        (0-39): 40 x GLMBlock(
          (input_layernorm): RMSNorm()
          (self_attention): SelfAttention(
            (query_key_value): Linear(in_features=4096, out_features=4608, bias=True)
            (core_attention): CoreAttention(
              (attention_dropout): Dropout(p=0.0, inplace=False)
            )
            (dense): Linear(in_features=4096, out_features=4096, bias=False)
          )
          (post_attention_layernorm): RMSNorm()
          (mlp): MLP(
            (dense_h_to_4h): Linear(in_features=4096, out_features=27392, bias=False)
            (dense_4h_to_h): Linear(in_features=13696, out_features=4096, bias=False)
          )
        )
      )
      (final_layernorm): RMSNorm()
    )
    (output_layer): Linear(in_features=4096, out_features=151552, bias=False)
    (vision): EVA2CLIPModel(
      (patch_embedding): PatchEmbedding(
        (proj): Conv2d(3, 1792, kernel_size=(14, 14), stride=(14, 14))
        (position_embedding): Embedding(6401, 1792)
      )
      (transformer): Transformer(
        (layers): ModuleList(
          (0-62): 63 x TransformerLayer(
            (input_layernorm): LayerNorm((1792,), eps=1e-06, elementwise_affine=True)
            (attention): Attention(
              (query_key_value): Linear(in_features=1792, out_features=5376, bias=True)
              (dense): Linear(in_features=1792, out_features=1792, bias=True)
              (output_dropout): Dropout(p=0.0, inplace=False)
            )
            (mlp): MLP(
              (activation_fn): GELUActivation()
              (fc1): Linear(in_features=1792, out_features=15360, bias=True)
              (fc2): Linear(in_features=15360, out_features=1792, bias=True)
            )
            (post_attention_layernorm): LayerNorm((1792,), eps=1e-06, elementwise_affine=True)
          )
        )
      )
      (linear_proj): GLU(
        (linear_proj): Linear(in_features=4096, out_features=4096, bias=False)
        (norm1): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
        (act1): GELU(approximate='none')
        (dense_h_to_4h): Linear(in_features=4096, out_features=13696, bias=False)
        (gate_proj): Linear(in_features=4096, out_features=13696, bias=False)
        (dense_4h_to_h): Linear(in_features=13696, out_features=4096, bias=False)
      )
      (conv): Conv2d(1792, 4096, kernel_size=(2, 2), stride=(2, 2))
    )
  )
)

三、FastAPI封装GLM-4V大模型服务接口

3.1 FastAPI 极简入门

搭建1个FastAPI服务依赖fastapi、pydantic、uvicorn三个库:

3.1.1 FastAPI

FastAPI是一个现代、快速(高性能)的Web框架,用于构建API,用Python编写。它基于标准的Python类型提示,提供自动的交互式文档和数据验证。

代码示例:

代码语言:javascript
复制
# 导入FastAPI模块
from fastapi import FastAPI

# 创建一个FastAPI实例
app = FastAPI()

# 定义一个路径操作函数
@app.get("/")
async def root():
    # 返回一个JSON响应
    return {"message": "Hello World"}

# 运行应用
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)

这段代码创建了一个简单的FastAPI应用,当访问根路径/时,会返回一个包含"Hello World"的消息。可以使用uvicorn运行这个应用,它是一个ASGI服务器,FastAPI是基于ASGI构建的

3.1.2 uvicorn

uvicorn是一个ASGI(Asynchronous Server Gateway Interface)服务器,用于运行现代的异步Python Web应用,如FastAPI。以下是如何使用uvicorn运行一个FastAPI应用的步骤:

假设你有一个名为main.py的文件,其中包含你的FastAPI应用:

代码语言:javascript
复制
from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def root():
    return {"message": "Hello World"}

可以使用以下命令运行你的应用:

代码语言:javascript
复制
uvicorn main:app --reload

这里的main是你的Python文件名(不包括.py扩展名),app是你的FastAPI实例的变量名。--reload标志告诉uvicorn在代码更改时自动重新加载应用,这对于开发非常有用。

3.1.3 pydantic

Pydantic是一个Python库,用于数据验证和设置管理。它被广泛用于FastAPI中,用于定义请求和响应模型,以进行数据验证和解析。

代码语言:javascript
复制
from pydantic import BaseModel

class Item(BaseModel):
    name: str
    description: str = None
    price: float
    tax: float = None
    tags: list = []

items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}

item = Item(**items["foo"])
print(item)
# 输出: Item(name='Foo', description=None, price=50.2, tax=None, tags=[])

3.2 GLM-4V-API服务端

3.2.1 代码示例
代码语言:javascript
复制
from fastapi import FastAPI
from pydantic import BaseModel
import uvicorn
import requests
from io import BytesIO
from modelscope import snapshot_download
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from PIL import Image


model_dir = snapshot_download('ZhipuAI/glm-4v-9b')
#model_dir = snapshot_download('qwen/Qwen-VL-Chat')
device = "auto" 
tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True)
glm4_vl = AutoModelForCausalLM.from_pretrained(model_dir, device_map=device, trust_remote_code=True,torch_dtype=torch.float16).eval()

# 创建FastAPI应用实例
app = FastAPI()

# 定义请求体模型,与OpenAI API兼容
class ChatCompletionRequest(BaseModel):
    model: str
    messages: list
    max_tokens: int = 50
    temperature: float = 1.0

# 文本生成函数
def generate_text(model: str, messages: list, max_tokens: int, temperature: float):
    
    query = messages[0]["content"][0]["text"]
    image_url =  messages[0]["content"][1]["image_url"]["url"]
    image_get_response = requests.get(image_url)
    image = None
    if image_get_response.status_code == 200:
        # 将二进制数据转换为Image对象
        image = Image.open(BytesIO(image_get_response.content)).convert("RGB")
        # 现在你可以使用image对象进行进一步的处理
    else:
        print("Failed to download image")
    print(query,image_url,image)
    
    response, history = glm4_vl.chat(tokenizer,image=image, query=query, history=None,temperature=temperature,max_length=max_tokens)
    return response

# 定义路由和处理函数,与OpenAI API兼容
@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
    # 调用自定义的文本生成函数
    response = generate_text(request.model, request.messages, request.max_tokens, request.temperature)
    return {"choices": [{"message": {"content": response}}],"model": request.model}

# 启动FastAPI应用
if __name__ == "__main__":
    
    uvicorn.run(app, host="0.0.0.0", port=8888)
3.2.2 代码详解

  1. 环境:在代码之前建立conda环境、pip代码中依赖的库,这个地方不讲啦,可以看之前的文章
  2. 下载必要的库:如上一节讲到的fastapi、pydantic、uvicorn等用于搭建api服务的库,以及modelscope、transformers、torch,以及图片处理的库io、PIL等
  3. 下载模型:基于modelscope的snapshot_download下载模型文件,专为网络不稳定的开发者服务
  4. 实例化分词器和模型:模型基于transformers的AutoTokenizer、AutoModelForCausalLM建立分词器和模型glm4_vl
  5. 实例化FastAPI:通过app=FastAPI()创建fastapi实例
  6. 定义请求体模型:继承pydantic的BaseModel,参数需要兼容OpenAI API
  7. 从主函数开始看:通过uvicorn.run启动Fastapi实例app,配置host和port
  8. 定义app的路由:路由指向v1/chat/completions
  9. 定义app的处理函数:处理函数调用generate_text函数,传入request接收的兼容OpenAI的请求体模型。
  10. generate_text文本和图像生成:提取query、image_url,基于requests.get获得图片二进制数据,并使用Image和BytesIO将二进制数据转换为Image对象,将Image图片和query文本传入glm4_vl.chat(),基于图片和文本生成response返回
  11. API返回格式:拼接choices、message、content等构造兼容OpenAI API的返回
3.2.3 代码使用

使用CUDA_VISIBLE_DEVICES=2 python run_api_glm4vl.py启动,指定卡2运行api服务。

显存占用​​​​​​28.35G(模型尺寸13B,根据我们之前提过很多次的经验,推理模型显存占用=模型尺寸*2=13*2=26G,差不多。Qwen-VL模型占用18.74G,整整多了10G显存)

3.3 GLM-4V-API客户端

3.3.1 代码示例
代码语言:javascript
复制
import requests
import json

# 定义请求的URL
url = "http://0.0.0.0:8888/v1/chat/completions"

# 定义请求体
data = {
        "model": "glm-4v",
        "messages":[{"role":"user","content":[{"type":"text","text":"这是什么?"},{"type":"image_url","image_url":{"url":"https://img1.baidu.com/it/u=1369931113,3388870256&fm=253&app=138&size=w931&n=0&f=JPEG&fmt=auto?sec=1703696400&t=f3028c7a1dca43a080aeb8239f09cc2f"}}]}],
        "max_tokens": 1024,
        "temperature": 0.5
}
# 将字典转换为JSON格式
headers = {'Content-Type': 'application/json'}
data_json = json.dumps(data)
# 发送POST请求
response = requests.post(url, data=data_json, headers=headers)

# 检查响应状态码
if response.status_code == 200:
    # 如果响应成功,打印响应内容
    print(response.json())
else:
    # 如果响应失败,打印错误信息
    print(f"Error: {response.status_code}, {response.text}")
3.3.2 代码要点

requests:采用requests库进行请求,requests是一个在Python中用于发送HTTP请求的库。它允许你发送各种类型的HTTP请求,如GET、POST、PUT、DELETE等,以及处理响应。requests库的一个主要优点是它的易用性和简洁的API。

请求体data定义:完全模仿OpenAI API请求结构,服务端也根据此结构规范处理。

headers请求头:接口请求格式为JSON,采用json.dumps可以将字典型的data转换为json字符串,用于请求时采用json格式传输。更多json用法可以参考之前的文章

3.3.2 代码使用

将以上客户端代码放入post_api.py中,采用python post_api.py调用服务端接口。

比如传入的图片为:

glm-4v输出为

“这是一张展示海滨风景的图片。图中可以看到一片宁静的海洋,海面上有几块岩石露出水面。天空呈现出深浅不一的蓝色,其中散布着一些白云。在远处,可以看到陆地和大海的交界线,以及一些小岛或陆地突起。整个场景给人一种宁静、宽广的感觉。”

qwen-vl输出为

“这是海面,可以看到远处的海平线和海岸线。天空中飘着美丽的云彩。”

看起来glm-4v的效果要好一些,主要原因:

  • 发布日期:glm-4v发布于2024年6月6日,隔着将近一年,qwen-vl发布于2023年8月22日
  • 分辨率:glm-4v是1120*1120,qwen-vl是448*448
  • 模型尺寸:glm-4v是13B,qwen-vl是9.6B

卷吧!期待Qwen2-VL的诞生!

四、总结

本文首先在引言中强调了一下OpenAI兼容API的重要性,希望引起读者重视,其次介绍了GLM-4V的原理与模型结构,最后简要讲了下FastAPI以及搭配组件,并基于FastAPI封装了OpenAI兼容API的GLM-4V大模型服务端接口,并给出了客户端实现。本文内容在工作中非常实用,希望大家能有所收获并与我交流。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-06-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 二、GLM-4V 介绍
    • 2.1 GLM-4V 概述
      • 2.2 GLM-4V 原理
        • 2.3 GLM-4V 模型结构
        • 三、FastAPI封装GLM-4V大模型服务接口
          • 3.1 FastAPI 极简入门
            • 3.1.1 FastAPI
            • 3.1.2 uvicorn
            • 3.1.3 pydantic
          • 3.2 GLM-4V-API服务端
            • 3.2.1 代码示例
            • 3.2.2 代码详解
            • 3.2.3 代码使用
          • 3.3 GLM-4V-API客户端
            • 3.3.1 代码示例
            • 3.3.2 代码要点
            • 3.3.2 代码使用
        • 四、总结
        相关产品与服务
        图片处理
        图片处理(Image Processing,IP)是由腾讯云数据万象提供的丰富的图片处理服务,广泛应用于腾讯内部各产品。支持对腾讯云对象存储 COS 或第三方源的图片进行处理,提供基础处理能力(图片裁剪、转格式、缩放、打水印等)、图片瘦身能力(Guetzli 压缩、AVIF 转码压缩)、盲水印版权保护能力,同时支持先进的图像 AI 功能(图像增强、图像标签、图像评分、图像修复、商品抠图等),满足多种业务场景下的图片处理需求。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档