前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享

Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享

作者头像
拓端
发布2024-10-31 17:48:09
发布2024-10-31 17:48:09
19100
代码可运行
举报
文章被收录于专栏:拓端tecdat拓端tecdat
运行总次数:0
代码可运行

本文描述了帮助客户使用马尔可夫链蒙特卡洛(MCMC)方法通过贝叶斯方法估计基本的单变量随机波动模型,就像Kim等人(1998年)所做的那样

定义模型以及从条件后验中抽取样本的函数的代码也在Python脚本中提供。

代码语言:javascript
代码运行次数:0
运行
复制
%matplotlib inline
from __future__ import division
......

from src import sv

来自Kim等人(1998年)的经典单变量随机波动性模型,在此之后简称KSC,如下所示:

这里,yt代表某个资产的修正后平均收益,ht为对数波动率

示例

我们将对1981年10月1日至1985年6月28日期间的英镑/美元汇率查看文末了解数据免费获取方式进行建模。

代码语言:javascript
代码运行次数:0
运行
复制
ex = pd.read_excel('es.xls')
dta = np.l......
.iloc[1:]

endg = (dta['......
ean()) * 100

准拟然估计

估计该模型参数的一种方法是Harvey等人(1994年)的“准拟然估计法”,其中将log(ε^2_t)用与均值和方差相同的高斯随机变量来近似替换。

代码语言:javascript
代码运行次数:0
运行
复制
mod_QSV = sv.QL......
())

贝叶斯估计

KSC提供了一种使用贝叶斯技术估计该模型的替代方法;他们将log(ε^2_t)用高斯混合分布近似表示,使得:

其中 st 是一个指示随机变量,定义为 P(st=i)=qi, i=1,…,K (K 是混合成分数目)。定义了 (qi,mi,v2i) 表示组成高斯分布的值如下所示。

代码语言:javascript
代码运行次数:0
运行
复制
# q_i, m_i, v_i^2
ksc_aras = np.array([......
)

在给定 stTt=1 的条件下,每个时间段的观测方程是由一个高斯噪声项定义的。

通过设置 K=7 是对 logε2t 进行很好近似的方法,Omori et al. (2007) 将其扩展到 K=10。

代码语言:javascript
代码运行次数:0
运行
复制
class TLDT(sm.t......
Model):
    """
    时变局部线性确定性趋势
  ......

        # 转换为对数平方,带有偏移量
        endog = n.logenog**2+ offset

        # 初始化基本模型
        super(TVLLDT, self)._......
tationary')

        # 设置观测方程的时变数组
        self['o......
.nobs))

        # 设置状态空间矩阵的固定分量
        self['d......
0] = 1

    def update......
7036, v_i^2)
        self['o......
rams[1]
        self['state_cov', 0, 0] = params[2]

先验分布

为了计算模型,我们需要为参数 θ 的先验分布进行特定的指定。下面的先验规范取自于 KSC。

σ2η 的先验分布

我们考虑共轭先验分布:

其中我们将 σr=5 和 Sσ=0.01×σr=0.05。

ϕ 的先验分布

定义 ϕ∗=(ϕ+1)/2,我们对 ϕ∗ 指定一个先验分布:

正如在 KSC 中讨论的那样,该先验分布在 (−1,1) 上支持随机波动性过程的平稳性。

设置 ϕ(1)=20 和 ϕ(2)=1.5 意味着 E[ϕ]=0.86。

最后:

μ 的先验分布

KSC 建议对 μ 设定一个模糊的先验分布(或者也可以稍微具有信息的先验分布,比如 μ∼N(0,10))。

从条件后验中采样

KSC 表明,在上述指定的先验条件下,我们可以按照以下方式从条件后验中采样:

采样 σ2η

条件后验分布为:

代码语言:javascript
代码运行次数:0
运行
复制
def draw_po......
or_params=(5, 0.05)):
    sigma_r, S_sigma = prior_params

    v1 = sig......
i * (states[0, :-1] - mu))**2)
    delta1 = S_sigma + tmp1 + tmp

    return ingammars(v1,scal=deta1)
采样 ϕ

我们可以应用 Metropolis 步骤:从 N(ϕ^,Vθ) 中生成一个提议值 ϕ∗

代码语言:javascript
代码运行次数:0
运行
复制

python
def g(phi, ......


    # 先验分布对非平稳过程给予零权重
    if np.abs(phi) >= 1:
        ret......
2) / 2 * sigma2
    tmp2 = 0.5 * np.log(1 - phi**2)

    return n......

    V_phi = sigma2 / tmp2

    proposal ......
om.uniform() else phi
采样μ̂

条件后验分布为:

代码语言:javascript
代码运行次数:0
运行
复制

python
def draw_pos......
 * (1 - phi)**2 + ......
)

    return norm.r......
2_mu**0.5)
采样htTt=1̂

在混合指示符(用于生成时变观测方程矩阵)和参数条件下,可以通过通常的模拟平滑器对状态进行采样。

采样stTt=1̂

每个指示变量st只能取有限个离散值(因为它是一个指示变量,表示时间t时哪个混合分布处于活动状态)。KSC表明,可以从以下概率质量函数独立地采样混合指示符:

其中fN(y∗t∣a,b)表示均值为a,方差为b的高斯随机变量在y∗t处的概率密度。

代码语言:javascript
代码运行次数:0
运行
复制
def (mod states):
    resid = od.nog[:, 0] - states[0]

    # 构建均值 (nobs x 7), 方差 (7,), 先验概率 (7,)
    means = ks_aram......
0]

    # 调整维度以便广播计算
    resid = np.repe......
[None, :], mod.nobs,
                                    axis=0)

    # 计算对数似然 (nobs x 7)
    loglikelihoods = -0.5 * ((resi......
* variances))

    # 得到(与后验(对数))成比例的值 (nobs x 7)
    posterior_kernel = log......
ilities)

    # 归一化得到实际后验概率
    tmp = logsumxp(psterir_kernl,axis=1)
    posterior_probabilitie......
d, states)

    # 从后验中抽取样本
    varaes = np.radom.niorm(ize=od.obs)
......
    sample = np.argmax(tmp, axis=1)

    return sample

MCMC

下面我们进行10,000次迭代以从后验中进行抽样。在下面展示结果时,我们将舍弃前5,000次迭代作为燃烧期,并且在剩下的5,000次迭代中,我们只保存每十次迭代的结果。然后从剩下的500次迭代中计算结果。

代码语言:javascript
代码运行次数:0
运行
复制

# 设置模型和模拟平滑器
md = TVLLT(eog)
mo.(0, sothr_stateTrue)
sim = md.siutin_sother()

# 模拟参数
nitertons = 10000
brn = 5000
tin = 10

# 存储轨迹
trae_sooted = np.eros((_iteations+ 1 mod.nobs))......

trce_sim2 = np.ers((n_iteations + 1, 1))

# 初始值 (p. 367)
trce_miing[0] = 0
[0] = 0.95
trace_sigma2[0] = 0.5
# 迭代
for s in range(1, n_teations + 1):
    # 更新模型参数
    mod.updat_ming(tace_mixing[s-1])......
    # 模拟平滑
    sim.smuate()......


    # 抽取混合指标
    trac_miing[s] = drawmixngmod states)
    
    # 抽取参数
    tra_phi[s] = (mod, sates, trace_phi[s-1], trace_mu[s-1], trace_sigma2[s-1])......

结果

下面我们给出参数的后验均值。我们还展示了相应的QMLE估计值。这些估计值与 ϕ 和 β 的后验均值相似,但是对于 ση² 的QMLE估计值约为贝叶斯方法的一半,可能表明准拟然方法的一个缺点。

代码语言:javascript
代码运行次数:0
运行
复制
# 参数的后验均值
menphi = n.men(trae_hi[burn:thin])......

print('  beta          = %.5f' % npexp(rs_LSVparams[2] / 2))

由于参数ση²控制潜在随机波动率过程的方差,低估将抑制样本中波动率过程的变化。如下图所示

代码语言:javascript
代码运行次数:0
运行
复制
fig, ax = plt.subplots(f......

ax.legend();

最后,我们可能对参数的完全条件后验分布感兴趣。以下是这些分布,以及后验均值和QMLE估计值。

代码语言:javascript
代码运行次数:0
运行
复制
fig, axes = plt.subplots(1, 3, ......

axes[0].set(title=r'$\phi$', ylim=ylim)
axes[0].legend(loc='upper left')
......
axes[2].set(title=r'$\beta$', ylim=ylim);
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-10-31,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 拓端数据部落 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 示例
  • 准拟然估计
  • 贝叶斯估计
    • 先验分布
      • σ2η 的先验分布
      • ϕ 的先验分布
      • μ 的先验分布
    • 从条件后验中采样
      • 采样 σ2η
      • 采样 ϕ
      • 采样μ̂
      • 采样htTt=1̂
      • 采样stTt=1̂
    • MCMC
    • 结果
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档