今天给大家总结的是SQL Server/MySQL/Oracle这三个关系数据库的函数内容,包含常用和不常用的。
这些总结都是此前整理好后保存的,最近集中发布,觉得有帮助,记得三连(点赞+转发+在看),岳哥才会更有动力继续发布。此外,大家也可以留言需要哪方面的总结。
-- MySQL
SELECT LENGTH('Hello World'); -- 11
-- SQL Server
SELECT LEN('Hello World'); -- 11
-- Oracle
SELECT LENGTH('Hello World') FROM DUAL; -- 11
-- MySQL & Orac
SELECT CHAR_LENGTH('你好'); -- 2
-- MySQL & SQL Server
SELECT SUBSTRING('Hello World', 1, 5); -- 'Hello'
SELECT SUBSTRING('Hello World', -5); -- 'World'
-- Oracle
SELECT SUBSTR('Hello World', 1, 5) FROM DUAL;
-- MySQL & SQL Server
SELECT LEFT('Hello World', 5); -- 'Hello'
SELECT RIGHT('Hello World', 5); -- 'World'
-- 所有数据库通用
SELECT REPLACE('Hello World', 'World', 'SQL'); -- 'Hello SQL'
SELECT STUFF('Hello World', 1, 5, 'Hi'); -- 'Hi World'
-- MySQL
SELECT POSITION('World' IN 'Hello World'); -- 7
-- Oracle
SELECT INSTR('Hello World', 'World') FROM DUAL; -- 7
-- SQL Server
SELECT CHARINDEX('World', 'Hello World'); -- 7
-- 所有数据库
SELECT REVERSE('Hello'); -- 'olleH'
-- SQL Server & MySQL
SELECT 'Hello' + SPACE(1) + 'World'; -- 'Hello World'
-- MySQL
SELECT REPEAT('SQL', 3); -- 'SQLSQLSQL'
-- SQL Server
SELECT REPLICATE('SQL', 3); -- 'SQLSQLSQL'
-- MySQL & SQL Server
SELECT FORMAT(123456.789, 2); -- '123,456.79'
-- SQL Server
SELECT value FROM STRING_SPLIT('a,b,c', ',');
-- MySQL
SELECT SUBSTRING_INDEX('a,b,c', ',', 1); -- 'a'
-- MySQL
SELECT GROUP_CONCAT(name SEPARATOR ',') FROM employees;
-- SQL Server
SELECT STRING_AGG(name, ',') FROM employees;
-- Oracle
SELECT LISTAGG(name, ',') WITHIN GROUP (ORDER BY name) FROM employees;
-- 所有数据库
SELECT ROUND(123.456, 2); -- 123.46
-- Oracle
SELECT TRUNC(123.456, 2) FROM DUAL; -- 123.45
-- MySQL
SELECT TRUNCATE(123.456, 2); -- 123.45
-- 所有数据库
SELECT MOD(10, 3); -- 1
SELECT SQRT(16); -- 4
SELECT SIGN(-10); -- -1
SELECT SIGN(10); -- 1
SELECT SIGN(0); -- 0
SELECT LOG(10, 100); -- 2
SELECT LOG10(100); -- 2
SELECT LN(2.7); -- 0.993
SELECT EXP(1); -- 2.718281828459045
-- MySQL & SQL Server
SELECT RAND();
-- Oracle
SELECT DBMS_RANDOM.VALUE FROM DUAL;
-- MySQL
SELECT NOW();
-- SQL Server
SELECT GETDATE();
-- Oracle
SELECT SYSDATE FROM DUAL;
-- MySQL
SELECT CURDATE();
-- Oracle & SQL Server
SELECT CURRENT_DATE;
-- MySQL
SELECT CURTIME();
-- Oracle & SQL Server
SELECT CURRENT_TIME;
-- MySQL
SELECT DATE_ADD('2024-03-12', INTERVAL 1 DAY);
SELECT DATE_ADD('2024-03-12', INTERVAL 1 MONTH);
SELECT DATE_ADD('2024-03-12', INTERVAL 1 YEAR);
-- SQL Server
SELECT DATEADD(day, 1, '2024-03-12');
SELECT DATEADD(month, 1, '2024-03-12');
SELECT DATEADD(year, 1, '2024-03-12');
-- MySQL
SELECT DATE_FORMAT('2024-03-12', '%Y年%m月%d日'); -- '2024年03月12日'
-- SQL Server
SELECT FORMAT(GETDATE(), 'yyyy年MM月dd日');
-- MySQL & Oracle
SELECT EXTRACT(YEAR FROM '2024-03-12');
SELECT EXTRACT(MONTH FROM '2024-03-12');
SELECT EXTRACT(DAY FROM '2024-03-12');
-- SQL Server
SELECT DATEPART(year, '2024-03-12');
SELECT DATEPART(month, '2024-03-12');
SELECT DATEPART(day, '2024-03-12');
-- MySQL & Oracle
SELECT LAST_DAY('2024-03-12'); -- '2024-03-31'
-- MySQL
SELECT IF(1 > 0, 'True', 'False');
-- SQL Server
SELECT IIF(1 > 0, 'True', 'False');
-- MySQL
SELECT IFNULL(NULL, 'Default');
-- SQL Server
SELECT ISNULL(NULL, 'Default');
-- Oracle
SELECT NVL(NULL, 'Default') FROM DUAL;
SELECT NULLIF(10, 10); -- NULL
SELECT NULLIF(10, 20); -- 10
-- MySQL & Oracle
SELECT GREATEST(1, 2, 3, 4, 5); -- 5
SELECT LEAST(1, 2, 3, 4, 5); -- 1
SELECT
name,
salary,
ROW_NUMBER() OVER (ORDER BY salary DESC) as row_num,
RANK() OVER (ORDER BY salary DESC) as rank_num,
DENSE_RANK() OVER (ORDER BY salary DESC) as dense_rank_num
FROM employees;
SELECT
name,
department,
salary,
FIRST_VALUE(salary) OVER (PARTITION BY department ORDER BY salary DESC) as highest_salary,
LAST_VALUE(salary) OVER (PARTITION BY department ORDER BY salary DESC
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) as lowest_salary
FROM employees;
SELECT
name,
department,
salary,
LAG(salary) OVER (PARTITION BY department ORDER BY salary) as prev_salary,
LEAD(salary) OVER (PARTITION BY department ORDER BY salary) as next_salary
FROM employees;
SELECT
name,
salary,
NTILE(4) OVER (ORDER BY salary) as quartile
FROM employees;
SELECT JSON_EXTRACT('{"name": "John", "age": 30}', '$.name'); -- "John"
SELECT JSON_OBJECT('name', 'John', 'age', 30);
SELECT JSON_ARRAY(1, 2, 3, 4, 5);
SELECT JSON_CONTAINS('{"a": 1, "b": 2}', '1', '$.a'); -- 1
-- MySQL & SQL Server
SELECT MD5('password');
-- MySQL
SELECT SHA1('password');
SELECT SHA2('password', 256);
-- MySQL
SET @key = 'secret_key';
SET @encrypted = AES_ENCRYPT('text', @key);
SELECT AES_DECRYPT(@encrypted, @key);
SELECT name, age
FROM employees
FOR XML PATH('employee'), ROOT('employees')
DECLARE @xml XML
SET @xml = '<root><child>value</child></root>'
SELECT @xml.value('(/root/child)[1]', 'varchar(50)')
SELECT 'hello' REGEXP '^h'; -- 1
SELECT 'hello' RLIKE 'l+'; -- 1
SELECT * FROM employees WHERE REGEXP_LIKE(email, '^[A-Za-z]+@[A-Za-z]+\.[A-Za-z]{2,4}$');
-- MySQL
SELECT VERSION();
-- SQL Server
SELECT @@VERSION;
-- Oracle
SELECT * FROM V$VERSION;
-- 所有数据库
SELECT USER;
SELECT CURRENT_USER;
-- MySQL
SELECT DATABASE();
-- SQL Server
SELECT DB_NAME();
SELECT department, location, COUNT(*)
FROM employees
GROUP BY GROUPING SETS (
(department, location),
(department),
(location),
()
);
SELECT department, location, COUNT(*)
FROM employees
GROUP BY CUBE (department, location);
SELECT
COALESCE(department, 'Total') as department,
COALESCE(location, 'Subtotal') as location,
COUNT(*) as employee_count,
AVG(salary) as avg_salary
FROM employees
GROUP BY ROLLUP (department, location);
-- SQL Server
SELECT *
FROM (
SELECT department, location, salary
FROM employees
) AS SourceTable
PIVOT (
AVG(salary)
FOR location IN ([New York], [London], [Tokyo])
) AS PivotTable;
SELECT
PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY salary) as median_salary,
PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY salary) as discrete_median
FROM employees;
SELECT CORR(salary, performance_score)
FROM employees;
SELECT
department,
AVG(salary) as avg_salary,
STDDEV(salary) as salary_stddev,
VARIANCE(salary) as salary_variance
FROM employees
GROUP BY department;
-- Oracle
SELECT
department,
FIRST_VALUE(salary) OVER (PARTITION BY department ORDER BY hire_date) as first_salary,
LAST_VALUE(salary) OVER (
PARTITION BY department
ORDER BY hire_date
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
) as last_salary
FROM employees;
-- 复杂LIKE模式
SELECT * FROM employees
WHERE
name LIKE '[A-M]%' -- SQL Server, 以A到M开头的名字
AND email LIKE '%@__%.__%'; -- 标准email模式
-- SQL Server
SELECT CHOOSE(2, 'First', 'Second', 'Third'); -- 返回 'Second'
SELECT
employee_name,
salary,
CASE
WHEN salary <= (SELECT AVG(salary) FROM employees) THEN 'Below Average'
WHEN salary <= (SELECT AVG(salary) + STDDEV(salary) FROM employees) THEN 'Average'
WHEN salary <= (SELECT AVG(salary) + 2*STDDEV(salary) FROM employees) THEN 'Above Average'
ELSE 'Exceptional'
END as salary_category
FROM employees;
SELECT
name,
salary,
PERCENT_RANK() OVER (ORDER BY salary) as salary_percentile
FROM employees;
SELECT
name,
salary,
CUME_DIST() OVER (ORDER BY salary) as salary_distribution
FROM employees;
-- MySQL
SELECT
name,
birthdate,
TIMESTAMPDIFF(YEAR, birthdate, CURDATE()) as age,
DATE_ADD(birthdate,
INTERVAL TIMESTAMPDIFF(YEAR, birthdate, CURDATE()) YEAR) as last_birthday,
DATE_ADD(birthdate,
INTERVAL TIMESTAMPDIFF(YEAR, birthdate, CURDATE()) + 1 YEAR) as next_birthday
FROM employees;
SELECT
name,
hire_date,
CASE
WHEN DATEDIFF(YEAR, hire_date, GETDATE()) < 2 THEN 'Junior'
WHEN DATEDIFF(YEAR, hire_date, GETDATE()) < 5 THEN 'Intermediate'
WHEN DATEDIFF(YEAR, hire_date, GETDATE()) < 10 THEN 'Senior'
ELSE 'Expert'
END as experience_level
FROM employees;
WITH salary_stats AS (
SELECT
department,
AVG(salary) as avg_salary,
STDDEV(salary) as salary_stddev
FROM employees
GROUP BY department
)
SELECT
e.name,
e.department,
e.salary,
s.avg_salary,
(e.salary - s.avg_salary) / s.salary_stddev as z_score,
PERCENT_RANK() OVER (PARTITION BY e.department ORDER BY e.salary) as dept_percentile
FROM employees e
JOIN salary_stats s ON e.department = s.department;
WITH daily_attendance AS (
SELECT
employee_id,
attendance_date,
check_in_time,
check_out_time,
CASE
WHEN check_in_time > '09:00:00' THEN 'Late'
WHEN check_out_time < '17:00:00' THEN 'Early Leave'
ELSE 'Normal'
END as attendance_status
FROM attendance
)
SELECT
e.name,
COUNT(*) as total_days,
SUM(CASE WHEN a.attendance_status = 'Late' THEN 1 ELSE 0 END) as late_days,
SUM(CASE WHEN a.attendance_status = 'Early Leave' THEN 1 ELSE 0 END) as early_leave_days,
FORMAT(COUNT(*) * 1.0 /
(SELECT COUNT(DISTINCT attendance_date) FROM attendance), 'P') as attendance_rate
FROM employees e
JOIN daily_attendance a ON e.id = a.employee_id
GROUP BY e.name;
WITH monthly_sales AS (
SELECT
YEAR(sale_date) as year,
MONTH(sale_date) as month,
SUM(amount) as total_sales,
COUNT(DISTINCT customer_id) as customer_count
FROM sales
GROUP BY YEAR(sale_date), MONTH(sale_date)
)
SELECT
year,
month,
total_sales,
customer_count,
total_sales / customer_count as avg_customer_value,
LAG(total_sales) OVER (ORDER BY year, month) as prev_month_sales,
total_sales - LAG(total_sales) OVER (ORDER BY year, month) as sales_growth,
FORMAT((total_sales - LAG(total_sales) OVER (ORDER BY year, month)) /
LAG(total_sales) OVER (ORDER BY year, month), 'P') as growth_rate
FROM monthly_sales;