时间序列分析是数据挖掘社区中的焦点,是提取对无数实际应用程序至关重要的有价值见解的基石。基础模型 (FM) 的最新进展从根本上重塑了时间序列分析的模型设计范式,在实践中推动了各种下游任务。这些创新方法通常利用预先训练或微调的 FM 来利用专为时间序列分析定制的通用知识。在本综述中,目标是提供用于时间序列分析的 FM 的全面且最新的概述。虽然之前的综述主要关注 FM 在时间序列分析中的应用或流程方面,但它们往往缺乏对阐明 FM 为何以及如何有益于时间序列分析的基本机制的深入理解。为了解决这一差距,本综述采用了以模型为中心的分类,描述了时间序列 FM 的各种关键要素,包括模型架构、预训练技术、适应方法和数据模式。总体而言,这项综述旨在巩固与时间序列分析相关的 FM 的最新进展,强调其理论基础、最近的发展进展以及未来研究探索的途径。
(非)Transformer的TSFM路线图
Q: 这篇论文试图解决什么问题?
A: 这篇论文《Foundation Models for Time Series Analysis: A Tutorial and Survey》旨在提供一个全面且最新的关于时间序列分析中基础模型(Foundation Models, FMs)的概述。论文试图解决的问题是,尽管时间序列分析在数据挖掘社区中占有核心地位,并且在许多实际应用中至关重要,但是现有的文献对于时间序列分析中基础模型的系统性分析却相对缺乏。特别是,以往的研究要么集中在应用层面,要么集中在流程方面,但往往缺乏对基础模型如何以及为何能够提升时间序列分析的深入理解。
为了解决这一问题,论文采取了以下措施:
模型中心分类:通过模型中心的分类方法,明确了时间序列基础模型(Time Series Foundation Models, TSFMs)的各个关键要素,包括模型架构、预训练技术、适应方法和数据模态。
Jin M, Wen Q, Liang Y, et al. Large models for time series and spatio-temporal data: A survey and outlook[J]. arXiv preprint arXiv:2310.10196, 2023.
Jiang Y, Pan Z, Zhang X, et al. Empowering Time Series Analysis with Large Language Models: A Survey[J]. arXiv preprint arXiv:2402.03182, 2024.
Zhang X, Chowdhury R R, Gupta R K, et al. Large Language Models for Time Series: A Survey[J]. arXiv preprint arXiv:2402.01801, 2024.
Miller J A, Aldosari M, Saeed F, et al. A survey of deep learning and foundation models for time series forecasting[J]. arXiv preprint arXiv:2401.13912, 2024.