首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >KDD 2023 | 时空数据(Spatial-Temporal)ADS论文总结

KDD 2023 | 时空数据(Spatial-Temporal)ADS论文总结

作者头像
时空探索之旅
发布2024-11-19 16:22:33
发布2024-11-19 16:22:33
2230
举报
文章被收录于专栏:时空探索之旅时空探索之旅

ADS Track(Applied Data Science,应用数据科学赛道)接收率:25.4%(184/72

ADS track中有2个session中与时空数据(城市计算)紧密相关,还有一些其余session中有一些做的时空数据任务。

ADS Track Topic:交通模拟,多模态数据,ETA,物流外卖配送,强化学习,交通预测,生成模型等。

Transportation I

1. CBLab: Supporting the Training of Large-Scale Traffic Control Policies with Scalable Traffic Simulation

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599789

代码https://github.com/caradryanl/CityBrainLab

作者:Chumeng Liang (Shanghai Jiao Tong University), Zherui Huang (Shanghai Jiao Tong University), Yicheng Liu (Shanghai Jiao Tong University), Zhanyu Liu (Shanghai Jiao Tong University), Guanjie Zheng (Shanghai Jiao Tong University), Hanyuan Shi (Independent Researchers), Kan Wu (Research Center for Intelligent Transportation, Zhejiang Lab), Yuhao Du (Independent Researchers), FULIANG LI (Baidu), Zhenhui Jessie Li (Yunqi Academy of Engineering)

关键词:信控优化,交通模拟,大规模数据

CBLab

2. M3PT: A Multi-Modal Model for POI Tagging

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599862

代码https://github.com/DeqingYang/M3PT

作者:Jingsong Yang (Fudan University), Guanzhou Han (Alibaba Group), Deqing Yang (Fudan University), Jingping Liu (East China University of Science and Technology), Yanghua Xiao (Fudan University), Xiang Xu (Alibaba Group), Baohua Wu (Alibaba Group), Shenghua Ni (Alibaba Group)

关键词:多模态、POI、POI标记

M3PT

3. Understanding the Semantics of GPS-Based Trajectories for Road Closure Detection

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599926

作者:Jiasheng Zhang (University of Electronic Science and Technology of China), Kaiqiang An (Didi Chuxing Technology Co.), Guoping Liu (Didi Chuxing Technology Co.), Xiang Wen (Didi Chuxing Technology Co.), Runbo Hu (Didi Chuxing Technology Co.), Jie Shao (University of Electronic Science and Technology of China)

关键词:封闭道路检测、对比学习

T-Closure

4. A Data-Driven Region Generation Framework for Spatiotemporal Transportation Service Management

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599760

作者:Liyue Chen (Peking University), Jiangyi Fang (Huazhong University of Science and Technology), Zhe Yu (DiDi Chuxing), Yongxin Tong (Beihang University), Shaosheng Cao (DiDi Chuxing), Leye Wang (Peking University)

关键词:出行服务、空间数据管理

RegionGen

5. Hierarchical Reinforcement Learning for Dynamic Autonomous Vehicle Navigation at Intelligent Intersections

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599839

作者:Qian Sun (The Hong Kong University of Science and Technology), Le Zhang (Baidu Research), Huan Yu (The Hong Kong University of Science and Technology(Guangzhou); The Hong Kong University of Science and Technology), Weijia Zhang (The Hong Kong University of Science and Technology(Guangzhou)), Yu Mei (Baidu Inc.), Hui Xiong (The Hong Kong University of Science and Technology(Guangzhou); The Hong Kong University of Science and Technology)

关键词:信控优化、多智能体强化学习,动态车辆导航

NavTL

6. Road Planning for Slums via Deep Reinforcement Learning

链接https://dl.acm.org/doi/10.1145/3580305.3599901

代码https://github.com/tsinghua-fib-lab/road-planning-for-slums

作者:Yu Zheng (Department of Electronic Engineering, BNRist, Tsinghua University), Hongyuan Su (Department of Electronic Engineering, BNRist, Tsinghua University), Jingtao Ding (Department of Electronic Engineering, BNRist, Tsinghua University), Depeng Jin (Department of Electronic Engineering, BNRist, Tsinghua University), Yong Li (Department of Electronic Engineering, BNRist, Tsinghua University)

关键词:路径规划,贫民窟改造

7. Large-Scale Urban Cellular Traffic Generation via Knowledge-Enhanced GANs with Multi-Periodic Patterns

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599853

代码https://github.com/shirdy/TrafficGeneration/tree/master/Urban/

作者:Shuodi Hui (Tsinghua University), Huandong Wang (Tsinghua University), Tong Li (Tsinghua University), Xinghao Yang (Tsinghua University), Xing Wang (China Mobile Research Institute), Junlan Feng (China Mobile Research Institute), Lin Zhu (China Mobile Research Institute), Chao Deng (China Mobile Research Institute), Pan Hui (Hong Kong University of Science and Technology), Depeng Jin (Tsinghua University), Yong Li (Tsinghua University)

关键词:蜂窝流量、知识图谱、GAN

Transportation II

8. SAInf: Stay Area Inference of Vehicles using Surveillance Camera Records

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599952

作者:Zhipeng Ma (Southwest Jiaotong University; JD iCity, JD Technology), Chuishi Meng (JD iCity, JD Technology), Huimin Ren (JD iCity, JD Technology), Sijie Ruan (Beijing Institute of Technology), Jie Bao (JD iCity, JD Technology), Xiaoting Wang (JD iCity, JD Technology), Tianrui Li (Southwest Jiaotong University), Yu Zheng (JD iCity, JD Technology)

关键词:轨迹数据挖掘、停留事件检测

9. Uncertainty-Aware Probabilistic Travel Time Prediction for On-Demand Ride-Hailing at DiDi

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599925

作者:Hao Liu (The Hong Kong University of Science and Technology (Guangzhou)), Wenzhao Jiang (The Hong Kong University of * Science and Technology (Guangzhou)), Shui Liu (Didichuxing Co. Ltd), Xi Chen (Didichuxing Co. Ltd)

关键词:不确定性、ETA、概率预测

ProbTTE

10. QTNet: Theory-Based Queue Length Prediction for Urban Traffic

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599890

作者:Ryu Shirakami (Sumitomo Electric System Solutions, Co., Ltd.), Toshiya Kitahara (Sumitomo Electric System Solutions, Co., Ltd.), Koh Takeuchi (Kyoto University), Hisashi Kashima (Kyoto University)

关键词:交通预测,物理指导的深度学习

QTNet

11. iETA: A Robust and Scalable Incremental Learning Framework for Time-of-Arrival Estimation

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599842

作者:Jindong Han (The Hong Kong University of Science and Technology), Hao Liu (The Hong Kong University of Science and Technology (Guangzhou); Guangzhou HKUST Fok Ying Tung Research Institute), Shui Liu (Didichuxing Co. Ltd.), Xi Chen (Didichuxing Co. Ltd.), Naiqiang Tan (Didichuxing Co. Ltd.), Hua Chai (Didichuxing Co. Ltd.), Hui Xiong (The Hong Kong University of Science and Technology (Guangzhou) ; Guangzhou HKUST Fok Ying Tung Research Institute)

关键词:增量学习、ETA、知识蒸馏,对抗训练

iETA

12. A Preference-Aware Meta-Optimization Framework for Personalized Vehicle Energy Consumption Estimation

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599767

代码https://github.com/usail-hkust/Meta-Pec

作者:Siqi Lai (The Hong Kong University of Science and Technology (Guangzhou)), Weijia Zhang (The Hong Kong University of Science and Technology (Guangzhou)), Hao Liu (The Hong Kong University of Science and Technology (Guangzhou))

关键词:能量估计、元学习

Meta-Pec

13 Deep Transfer Learning for City-Scale Cellular Traffic Generation through Urban Knowledge Graph

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599801

作者:Zhang Shiyuan (Tsinghua University), Tong Li (Tsinghua University), Shuodi Hui (Tsinghua University), Guangyu Li (China Mobile Research Institute), Yanping Liang (China Mobile Research Institute), Li Yu (China Mobile Research Institute), Depeng Jin (Tsinghua University), Yong Li (Tsinghua University)

关键词:迁移学习、蜂窝流量,城市知识图谱

14. Practical Synthetic Human Trajectories Generation Based on Variational Point Processes

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599888

作者:Qingyue Long (Department of Electronic Engineering, Tsinghua University), Huandong Wang (Department of Electronic Engineering, Tsinghua University), Tong Li (Department of Electronic Engineering, Tsinghua University), Lisi Huang (China Mobile Research Institute), Kun Wang (China Mobile Research Institute), Qiong Wu (China Mobile Research Institute), Guangyu Li (China Mobile Research Institute), Yanping Liang (China Mobile Research Institute), Li Yu (China Mobile Research Institute), Yong Li (Department of Electronic Engineering, Tsinghua University)

关键词:轨迹生成,VAE

好文分享 |【KDD 2023】基于变分点过程的行人轨迹生成

其他

15. Detecting Vulnerable Nodes in Urban Infrastructure Interdependent Network

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599804

代码https://github.com/tsinghua-fib-lab/KDD2023-ID546-UrbanInfra

作者:Jinzhu Mao (Tsinghua University), Liu Cao (Tsinghua University), Chen Gao (Tsinghua University), Huandong Wang (Tsinghua University), Fan Hangyu (Tsinghua University), Depeng Jin (Tsinghua University), Yong Li (Tsinghua University)

关键词:城市基础设置,强化学习,独立网络

16. ILRoute: A Graph-based Imitation Learning Method to Unveil Riders’ Routing Strategies in Food Delivery Service

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599844

作者:Tao Feng (Tsinghua University), Huan Yan (Tsinghua University), Huandong Wang (Tsinghua University), Wenzhen Huang (Tsinghua University), Yuyang Han (Tsinghua University), Hongsen Liao (Tsinghua University), Jinghua Hao (Tsinghua University), Yong Li (Tsinghua University)

关键词:外卖服务、模仿学习

17. DRL4Route: A Deep Reinforcement Learning Framework for Pick-Up and Delivery Route Prediction

链接https://dl.acm.org/doi/abs/10.1145/3580305.3599811

代码https://github.com/maoxiaowei97/DRL4Route

作者:Xiaowei Mao (Beijing Jiaotong University; Cainiao Network), Haomin Wen (Beijing Jiaotong University; Cainiao Network), Hengrui Zhang (Beijing Jiaotong University; Beijing Key Laboratory of Traffic Data Analysis and Mining), Huaiyu Wan (Beijing Jiaotong University; Beijing Key Laboratory of Traffic Data Analysis and Mining), Lixia Wu (Cainiao Network), Jianbin Zheng (Cainiao Network), Haoyuan Hu (Cainiao Network), Youfang Lin (Beijing Jiaotong University; Beijing Key Laboratory of Traffic Data Analysis and Mining)

关键词:物流配送,路线预测,强化学习

本组成果 |【KDD 2023】DRL4Route:面向物流包裹揽收与配送路径预测的深度强化学习框架

DRL4Route

如果觉得有帮助还请分享,在看,点赞

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-04-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 时空探索之旅 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Transportation I
    • 1. CBLab: Supporting the Training of Large-Scale Traffic Control Policies with Scalable Traffic Simulation
    • 2. M3PT: A Multi-Modal Model for POI Tagging
    • 3. Understanding the Semantics of GPS-Based Trajectories for Road Closure Detection
    • 4. A Data-Driven Region Generation Framework for Spatiotemporal Transportation Service Management
    • 5. Hierarchical Reinforcement Learning for Dynamic Autonomous Vehicle Navigation at Intelligent Intersections
    • 6. Road Planning for Slums via Deep Reinforcement Learning
    • 7. Large-Scale Urban Cellular Traffic Generation via Knowledge-Enhanced GANs with Multi-Periodic Patterns
  • Transportation II
    • 8. SAInf: Stay Area Inference of Vehicles using Surveillance Camera Records
    • 9. Uncertainty-Aware Probabilistic Travel Time Prediction for On-Demand Ride-Hailing at DiDi
    • 10. QTNet: Theory-Based Queue Length Prediction for Urban Traffic
    • 11. iETA: A Robust and Scalable Incremental Learning Framework for Time-of-Arrival Estimation
    • 12. A Preference-Aware Meta-Optimization Framework for Personalized Vehicle Energy Consumption Estimation
    • 13 Deep Transfer Learning for City-Scale Cellular Traffic Generation through Urban Knowledge Graph
    • 14. Practical Synthetic Human Trajectories Generation Based on Variational Point Processes
  • 其他
    • 15. Detecting Vulnerable Nodes in Urban Infrastructure Interdependent Network
    • 16. ILRoute: A Graph-based Imitation Learning Method to Unveil Riders’ Routing Strategies in Food Delivery Service
    • 17. DRL4Route: A Deep Reinforcement Learning Framework for Pick-Up and Delivery Route Prediction
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档