定义一个语法规则,配置数据,以根据语法规则判断数据是否满足配置要求的结果为依据,来定义程序的执行逻辑;
在软件开发中,会遇到有些问题多次重复出现,而且有一定的相似性和规律性。如果将它们归纳成一种简单的语言,那么这些问题实例将是该语言的一些句子,这样就可以用“编译原理”中的解释器模式来实现了。 虽然使用解释器模式的实例不是很多,但对于满足以上特点,且对运行效率要求不是很高的应用实例,如果用解释器模式来实现,其效果是非常好的。
解释器(Interpreter)模式:给分析对象定义一个语言,并定义该语言的文法表示,再设计一个解析器来解释语言中的句子。也就是说,用编译语言的方式来分析应用中的实例。这种模式实现了文法表达式处理的接口,该接口解释一个特定的上下文。
这里提到的文法和句子的概念同编译原理中的描述相同,“文法”指语言的语法规则,而“句子”是语言集中的元素。例如,汉语中的句子有很多,“我是中国人”是其中的一个句子,可以用一棵语法树来直观地描述语言中的句子。
解释器模式常用于对简单语言的编译或分析实例中,为了掌握好它的结构与实现,必须先了解编译原理中的“文法、句子、语法树”等相关概念。
文法是用于描述语言的语法结构的形式规则。没有规矩不成方圆,例如,有些人认为完美爱情的准则是“相互吸引、感情专一、任何一方都没有恋爱经历”,虽然最后一条准则较苛刻,但任何事情都要有规则,语言也一样,不管它是机器语言还是自然语言,都有它自己的文法规则。例如,中文中的“句子”的文法如下:
〈句子〉::=〈主语〉〈谓语〉〈宾语〉
〈主语〉::=〈代词〉|〈名词〉
〈谓语〉::=〈动词〉
〈宾语〉::=〈代词〉|〈名词〉
〈代词〉你|我|他
〈名词〉7大学生I筱霞I英语
〈动词〉::=是|学习
注:这里的符号“::=”表示“定义为”的意思,用“〈”和“〉”括住的是非终结符,没有括住的是终结符。
句子是语言的基本单位,是语言集中的一个元素,它由终结符构成,能由“文法”推导出。例如,上述文法可以推出“我是大学生”,所以它是句子。
语法树是句子结构的一种树型表示,它代表了句子的推导结果,它有利于理解句子语法结构的层次。
解释器模式的结构与组合模式相似,不过其包含的组成元素比组合模式多,而且组合模式是对象结构型模式,而解释器模式是类行为型模式。
package com.zibo.design.twenty_five;
import java.util.*;
/*文法规则
<expression> ::= <city>的<person>
<city> ::= 韶关|广州
<person> ::= 老人|妇女|儿童
*/
public class InterpreterPatternDemo {
public static void main(String[] args) {
Context bus = new Context();
bus.freeRide("韶关的老人");
bus.freeRide("韶关的年轻人");
bus.freeRide("广州的妇女");
bus.freeRide("广州的儿童");
bus.freeRide("山东的儿童");
}
}
// 抽象表达式类
interface Expression {
boolean interpret(String info);
}
// 终结符表达式类
class TerminalExpression implements Expression {
private final Set<String> set = new HashSet<>();
public TerminalExpression(String[] data) {
Collections.addAll(set, data);
}
public boolean interpret(String info) {
return set.contains(info);
}
}
// 非终结符表达式类
class AndExpression implements Expression {
private final Expression city;
private final Expression person;
public AndExpression(Expression city, Expression person) {
this.city = city;
this.person = person;
}
public boolean interpret(String info) {
String[] s = info.split("的");
return city.interpret(s[0]) && person.interpret(s[1]);
}
}
// 环境类
class Context {
private final Expression cityPerson;
public Context() {
String[] cities = {"韶关", "广州"};
Expression city = new TerminalExpression(cities);
String[] persons = {"老人", "妇女", "儿童"};
Expression person = new TerminalExpression(persons);
cityPerson = new AndExpression(city, person);
}
public void freeRide(String info) {
boolean ok = cityPerson.interpret(info);
if(ok){
System.out.println("您是" + info + ",您本次乘车免费!");
}else{
System.out.println(info + ",您不是免费人员,本次乘车扣费2元!");
}
}
}
您是韶关的老人,您本次乘车免费!
韶关的年轻人,您不是免费人员,本次乘车扣费2元!
您是广州的妇女,您本次乘车免费!
您是广州的儿童,您本次乘车免费!
山东的儿童,您不是免费人员,本次乘车扣费2元!
在项目开发中,如果要对数据表达式进行分析与计算,无须再用解释器模式进行设计了,Java 提供了以下强大的数学公式解析器:Expression4J、MESP(Math Expression String Parser) 和 Jep 等,它们可以解释一些复杂的文法,功能强大,使用简单。
现在以 Jep 为例来介绍该工具包的使用方法。Jep 是 Java expression parser 的简称,即 Java 表达式分析器,它是一个用来转换和计算数学表达式的 Java 库。通过这个程序库,用户可以以字符串的形式输入一个任意的公式,然后快速地计算出其结果。而且 Jep 支持用户自定义变量、常量和函数,它包括许多常用的数学函数和常量。
下面以计算存款利息为例来介绍。存款利息的计算公式是:本金x利率x时间=利息,其相关代码如下:
package net.biancheng.c.interpreter;
import com.singularsys.jep.*;
public class JepDemo {
public static void main(String[] args) throws JepException {
Jep jep = new Jep();
//定义要计算的数据表达式
String 存款利息 = "本金*利率*时间";
//给相关变量赋值
jep.addVariable("本金", 10000);
jep.addVariable("利率", 0.038);
jep.addVariable("时间", 2);
jep.parse(存款利息); //解析表达式
Object accrual = jep.evaluate(); //计算
System.out.println("存款利息:" + accrual);
// 存款利息:760.0
}
}
二十四种设计模式算是过了一遍,对于他们的认识也是多样的,有的食之无味、有的精妙绝伦、有的简单明了、有的复杂难懂……一部分基本算是掌握了,需要在实际编程中多多体会;有的还是理解得不够深刻,水过地皮干的那种,或许是确实复杂,或许是学习时候的精力较弱,需要在后续继续深入理解!总结来讲,一方面是多多实践练习,深入体会,另一方面是在精神状态较好的时候好好梳理一下设计模式的逻辑,加深理解,甚至优化现有的设计模式!设计模式毕竟是一些解决问题的思路,这符合我的爱好!