前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >TCGA数据库| 如何将表达矩阵与样本临床数据进行合并?

TCGA数据库| 如何将表达矩阵与样本临床数据进行合并?

作者头像
生信技能树
发布2025-01-08 14:46:58
发布2025-01-08 14:46:58
58900
代码可运行
举报
文章被收录于专栏:生信技能树生信技能树
运行总次数:0
代码可运行

前面我们已经给大家介绍过TCGA数据库中样本barcode的详细组成:TCGA样本barcode详细介绍,现在我们来看看如何将基因表达矩阵与样本临床信息进行合并,方便后续做 比如生存分析,基因在不同样本分期、性别、年龄分组等中的差异表达情况。

首先我们去TGCA下载如乳腺癌的基因表达矩阵

这里使用R包 TCGAbiolinks 去TCGA官网下载数据。

1、加载包:

代码语言:javascript
代码运行次数:0
运行
复制
## download tcga data
## update: 2024-02-22
## Author: zhang juan

rm(list=ls())
# 当然,需要先去安装这个包,如果已安装就可以跳过:
if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("TCGAbiolinks")

## load packages
library(TCGAbiolinks)
library(SummarizedExperiment)
suppressPackageStartupMessages(library(tidyverse))

2、癌症类型选择:

代码语言:javascript
代码运行次数:0
运行
复制
# 癌症类型,用 getGDCprojects()$project_id 查看所有
getGDCprojects()$project_id

# [1] "TARGET-AML"                "MATCH-Z1I"                 "HCMI-CMDC"                 "MATCH-W"         
# [5] "MATCH-Z1D"                 "MATCH-Z1A"                 "MATCH-U"                   "MATCH-Q"         
# [9] "TCGA-PCPG"                 "MATCH-H"                   "MATCH-C1"                  "TCGA-THYM"       
# [13] "MATCH-I"                   "MATCH-S1"                  "MATCH-P"                   "MATCH-R"      
# [17] "MATCH-Z1B"                 "TCGA-PAAD"                 "TCGA-STAD"                 "TCGA-TGCT"   
# [21] "MATCH-S2"                  "TCGA-SARC"                 "TCGA-PRAD"                 "TCGA-READ"     
# [25] "TCGA-UCS"                  "TCGA-UVM"                  "TRIO-CRU"                  "VAREPOP-APOLLO"
# [29] "WCDT-MCRPC"                "TARGET-ALL-P1"             "REBC-THYR"                 "TARGET-ALL-P2"   
# ...           

不同缩写代表的含义可取这个地址查看:https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/bcr-batch-codes

本次乳腺癌缩写为:BRCA

3、下载:

代码语言:javascript
代码运行次数:0
运行
复制
# 设置query 
query <- GDCquery(
  project = "TCGA-BRCA",  # 癌症类型,用 getGDCprojects()$project_id 查看所有
  data.category="Transcriptome Profiling",     # 数据类别, 用getProjectSummary(project)查看所有类别
  data.type ="Gene Expression Quantification", # 数据类型
  workflow.type="STAR - Counts"                # 工作流类型
  )

## 下载数据
GDCdownload(query=query, files.per.chunk= 50, directory = "./")

下来后的数据为一个样本一个tsv文件:如 8d1641ea-7552-4d23-9298-094e0056386a.rna_seq.augmented_star_gene_counts.tsv

4、整合成一个表达矩阵:

代码语言:javascript
代码运行次数:0
运行
复制
## 整理数据并存储为 R对象
GDCprepare(query,save=T,save.filename="TCGA-BRCA.transcriptome.Rdata", directory = "./")

## 再次加载
load("TCGA-BRCA.transcriptome.Rdata")
ls()
names(assays(data))
rowdata <- rowData(data)

5、提取mRNA的SummarizedExperiment对象,根据gene_type取子集,太简单了!

代码语言:javascript
代码运行次数:0
运行
复制
table(rowdata$gene_type)

tcga_mrna <- data[rowdata$gene_type == "protein_coding",]

tcga_mrna_count <- assay(tcga_mrna,"unstranded")   # mRNA的counts矩阵
tcga_mrna_tpm <- assay(tcga_mrna, "tpm_unstrand")  # mRNA的tpm矩阵
tcga_mrna_fpkm <- assay(tcga_mrna,"fpkm_unstrand") # mRNA的fpkm矩阵


# 添加gene_symbol, 先提取gene_name
symbol_mrna <- rowData(tcga_mrna)$gene_name
head(symbol_mrna)

####################################################### count值
tcga_mrna_count_symbol <- cbind(data.frame(symbol_mrna), as.data.frame(tcga_mrna_count))

# 去重复保留最大的那个
tcga_mrna_count_symbol1 <- tcga_mrna_count_symbol %>% 
  as_tibble() %>% # tibble不支持row name,我竟然才发现!
  mutate(meanrow = rowMeans(.[,-1]), .before=2) %>% 
  arrange(desc(meanrow)) %>% 
  distinct(symbol_mrna,.keep_all=T) %>% 
  select(-meanrow)

saveRDS(tcga_mrna_count_symbol1, file = "tcga_mrna_count_symbol.rds")
write.table(tcga_mrna_count_symbol1, file ="tcga_mrna_count_symbol.xls",row.names = F,sep = "\t",quote = F)

####################################################### tpm值
tcga_mrna_tpm_symbol <- cbind(data.frame(symbol_mrna), as.data.frame(tcga_mrna_tpm))

# 去重复保留最大的那个
tcga_mrna_tpm_symbol1 <- tcga_mrna_tpm_symbol %>% 
  as_tibble() %>% # tibble不支持row name,我竟然才发现!
  mutate(meanrow = rowMeans(.[,-1]), .before=2) %>% 
  arrange(desc(meanrow)) %>% 
  distinct(symbol_mrna,.keep_all=T) %>% 
  select(-meanrow)

saveRDS(tcga_mrna_tpm_symbol1, file = "tcga_mrna_tpm_symbol.rds")
write.table(tcga_mrna_tpm_symbol1, file = "tcga_mrna_tpm_symbol.xls",row.names = F,sep = "\t",quote = F)

####################################################### fpkm值
tcga_mrna_fpkm_symbol <- cbind(data.frame(symbol_mrna), as.data.frame(tcga_mrna_fpkm))

# 去重复保留最大的那个
tcga_mrna_fpkm_symbol1 <- tcga_mrna_fpkm_symbol %>% 
  as_tibble() %>% # tibble不支持row name,我竟然才发现!
  mutate(meanrow = rowMeans(.[,-1]), .before=2) %>% 
  arrange(desc(meanrow)) %>% 
  distinct(symbol_mrna,.keep_all=T) %>% 
  select(-meanrow)

saveRDS(tcga_mrna_fpkm_symbol1, file = "tcga_mrna_fpkm_symbol.rds")
write.table(tcga_mrna_fpkm_symbol1, file = "tcga_mrna_fpkm_symbol.xls",row.names = F,sep = "\t",quote = F)

接着下载样本临床信息

1、同样首先需要联网 进行 query:

代码语言:javascript
代码运行次数:0
运行
复制
##############################################################################
########################## 3.批量下载临床数据 ###################################
##############################################################################
# ref: https://bioconductor.org/packages/release/bioc/vignettes/TCGAbiolinks/inst/doc/clinical.html

query <- GDCquery(
  project = "TCGA-BRCA", 
  data.category = "Clinical",
  data.format = "bcr xml"
  )
save(query, file = "TCGA-BRCA.clinic.query.rdata")

# 下载到当前目录
GDCdownload(query, files.per.chunk= 50, directory = "./")

2、对下载的数据进行整理:

代码语言:javascript
代码运行次数:0
运行
复制
clinical <- GDCprepare_clinic(query, clinical.info = "patient", directory = "./")
clinical.follow_up <- GDCprepare_clinic(query, clinical.info = "follow_up", directory = "./")
clinical.stage_event <- GDCprepare_clinic(query, clinical.info = "stage_event", directory = "./")
clinical.drug <- GDCprepare_clinic(query, clinical.info = "drug", directory = "./")
clinical.radiation <- GDCprepare_clinic(query, clinical.info = "radiation", directory = "./")
clinical.admin <- GDCprepare_clinic(query, clinical.info = "admin", directory = "./")

# 保存
saveRDS(clinical, file = "TCGA-BRCA.clinical_patient.rds")
saveRDS(clinical.admin, file = "TCGA-BRCA.clinical_admin.rds")
saveRDS(clinical.drug, file = "TCGA-BRCA.clinical_drug.rds")
saveRDS(clinical.follow_up, file = "TCGA-BRCA.clinical_follow_up.rds")
saveRDS(clinical.radiation, file = "TCGA-BRCA.clinical_radiation.rds")
saveRDS(clinical.stage_event, file = "TCGA-BRCA.clinical_stage_event.rds")

现在将基因表达矩阵与临床信息整合在一起

先看看各自的样本ID名,根据前面的介绍《TCGA样本barcode详细介绍》,可以看到 表达矩阵里面的是样本ID,临床信息中是patient ID,一个病人可能会取多个样本,比如同时存在正常样本与肿瘤样本,也可能同时具有好几个肿瘤样本:

代码语言:javascript
代码运行次数:0
运行
复制
# 表达矩阵 样本名
mrna_fpkm <- readRDS("tcga_mrna_fpkm_symbol.rds")
head(colnames(mrna_fpkm))

# [1] "symbol_mrna"                  "TCGA-5L-AAT0-01A-12R-A41B-07" "TCGA-A2-A04U-01A-11R-A115-07" "TCGA-AN-A04A-01A-21R-A034-07"
# [5] "TCGA-A7-A13D-01A-13R-A12P-07" "TCGA-BH-A201-01A-11R-A14M-07"

# 临床信息
clinical <- readRDS(file = "TCGA-BRCA.clinical_patient.rds")
colnames(clinical)
head(clinical[,1:6])
# 我们后面相比较不同病理分期间某个基因表达差异,这里过滤一下样本
clinical <- clinical[,c("bcr_patient_barcode", "stage_event_pathologic_stage")]
colnames(clinical) <- c("bcr_patient_barcode", "pathologic_stage")
str(clinical)
table(clinical$pathologic_stage)
clinical$pathologic_stage <- as.character(clinical$pathologic_stage)
clinical <- clinical[clinical$pathologic_stage!="",]
clinical <- na.omit(clinical)
head(clinical)

# 变成 stage I 、II、III、IV、
clinical$stage <- clinical$pathologic_stage
clinical$stage[grepl("Stage I$|Stage IA$|Stage IB$",clinical$pathologic_stage)] <- "Stage I"
clinical$stage[grepl("Stage II$|Stage IIA$|Stage IIB$",clinical$pathologic_stage)] <- "Stage II"
clinical$stage[grepl("Stage III$|Stage IIIA$|Stage IIIB$|Stage IIIC$",clinical$pathologic_stage)] <- "Stage III"
table(clinical$stage)
table(clinical$pathologic_stage,clinical$stage)
clinical$stage <- factor(clinical$stage, levels = c("Stage I","Stage II","Stage III","Stage IV"))

那么,这里对应的时候,一般可以先将样本分为肿瘤样本与正常样本,看看肿瘤样本中 某个基因表达的高低分组 生存曲线KM差异:

肿瘤样本的编号一般为样本barcode中的第14-15位编码字符:

01-09为肿瘤样本,10以及10以上的为对照样本。肿瘤样本里面又有很多细小的分类:

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes

我们这里直接提取 01A类的实体瘤样本:

代码语言:javascript
代码运行次数:0
运行
复制
# 提取 01A类的实体瘤样本
table(str_sub(colnames(mrna_fpkm),14,16))
mrna_fpkm_tumor <- as.data.frame(mrna_fpkm[, str_sub(colnames(mrna_fpkm),14,16)=="01A"])
rownames(mrna_fpkm_tumor) <- mrna_fpkm$symbol_mrna
mrna_fpkm_tumor[1:6,1:6]

# 截取样本名字前面12个字符,与临床信息中的样本ID保持一致
colnames(mrna_fpkm_tumor) <- str_sub(colnames(mrna_fpkm_tumor), 1,12)
head(colnames(mrna_fpkm_tumor))

#[1] "TCGA-5L-AAT0" "TCGA-A2-A04U" "TCGA-AN-A04A" "TCGA-A7-A13D" "TCGA-BH-A201" "TCGA-BH-A0H6"

具有临床信息的病人ID与肿瘤样本表达矩阵取交集:

代码语言:javascript
代码运行次数:0
运行
复制
clinical_com <- clinical[match(comid, clinical$bcr_patient_barcode) ,]
mrna_fpkm_tumor_com <- mrna_fpkm_tumor[, comid]
dim(clinical_com)
# [1] 1056  114

dim(mrna_fpkm_tumor_com)
# [1] 19938  1056

查看乳腺癌中的明星基因 BRCA1 基因在不同分组中的差异吧:

代码语言:javascript
代码运行次数:0
运行
复制
# 查看 brca1基因在不同分组中的差异吧
data <- data.frame(clinical_com, BRCA1=t(mrna_fpkm_tumor_com["BRCA1",]))
head(data)

刚好使用我们前面给大家介绍的绘图小技巧《带有疾病进展的多分组差异结果如何展示?》中的代码绘制:

代码语言:javascript
代码运行次数:0
运行
复制
# 绘制小提琴图和显著性标记
library(ggplot2)
library(ggstatsplot)
library(patchwork)
library(reshape2)
library(stringr)
library(ggsignif)
library(ggsci)

max_pos <- max(data$BRCA1)
max_pos

B <- ggplot(data=data,aes(x=stage,y=BRCA1,colour = stage)) +  
  geom_boxplot(mapping=aes(x=stage,y=BRCA1,colour = stage), size=0.6, width = 0.5) + # 箱线图 
  geom_jitter(mapping=aes(x=stage,y=BRCA1,colour = stage),size=1.2) +  # 散点  
  scale_color_npg() + 
  # #scale_color_manual(limits=c("Stage I","Stage II","Stage III","Stage IV"), 
  #                    values =c( "#ed1a22","#00a651","#652b90","") ) + # 颜色  
  geom_signif(mapping=aes(x=stage,y=BRCA1), # 不同组别的显著性              
              comparisons = list(c("Stage I","Stage II"),c("Stage III","Stage IV"),c("Stage I","Stage III")),              
              map_signif_level=T, # T显示显著性,F显示p value              
              tip_length=c(0,0,0,0,0,0,0,0,0,0,0,0), # 修改显著性线两端的长短 
              y_position = c(max_pos,max_pos*1.04,max_pos*1.05), # 设置显著性线的位置高度              
              size=0.8, # 修改线的粗细              
              textsize = 4, # 修改显著性标记的大小              
              test = "t.test") + # 检验的类型,可以更改  
  theme_classic() + #设置白色背景
  labs(x="",y="")  + # 添加标题,x轴,y轴标签 
  ggtitle(label = "BRCA1") +
  theme(plot.title = element_text(hjust = 0.5),
        axis.line=element_line(linetype=1,color="black",size=0.9),
        axis.text.x = element_text(size = 12))

B

结果如下:

学会了这个,后面就可以随意绘制任意基因在任意临床表型分组间的差异了!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2025-01-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信技能树 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 首先我们去TGCA下载如乳腺癌的基因表达矩阵
    • 1、加载包:
    • 2、癌症类型选择:
    • 3、下载:
    • 4、整合成一个表达矩阵:
    • 5、提取mRNA的SummarizedExperiment对象,根据gene_type取子集,太简单了!
  • 接着下载样本临床信息
    • 1、同样首先需要联网 进行 query:
    • 2、对下载的数据进行整理:
  • 现在将基因表达矩阵与临床信息整合在一起
  • 查看乳腺癌中的明星基因 BRCA1 基因在不同分组中的差异吧:
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档