前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >综述:ATAC-Seq 数据分析工具大全

综述:ATAC-Seq 数据分析工具大全

作者头像
生信技能树
发布2025-01-23 19:45:20
发布2025-01-23 19:45:20
2760
举报
文章被收录于专栏:生信技能树生信技能树

技能树今年的新专辑《ATAC-Seq 数据分析2025》会介绍各种关于 ATAC-Seq 数据分析的小知识点,欢迎关注~

今年会在以往的基础上进行迭代与更新,并进行扩展,添加新的内容如scATAC-Seq,欢迎关注新专辑《ATAC-Seq 数据分析2025》~

今天给大家分享的这篇文献综合性地解释了 ATAC-seq 数据处理的基本原理,总结了常见的分析方法,并回顾了计算工具,为不同的研究问题提供建议。这篇文章为 ATAC-seq 数据的分析提供了一个起点和参考。

标题:Analytical Approaches for ATAC-seq Data Analysis 发表:Curr Protoc Hum Genet. 2020 Jun;106(1):e101. doi: 10.1002/cphg.101 链接:https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cphg.101

ATAC-seq 全称

ATAC-seq 全称为:the Assay for Transpose Accessible Chromatin using sequencing,翻译为转座酶可及染色质测序分析法

研究目的有:

  • 定位核小体
  • 识别转录因子结合位点
  • 识别对外部因子可及的DNA区域,包括启动子、增强子和其他类型的元件
  • 测量DNA调控元件的差异性活性

ATAC-seq的研究数量在短短几年内就接近1万项

ATAC-seq 实验原理图

ATAC-seq 依赖于一种活跃的Tn5转座酶的活性,Tn5转座酶简介如下:

Tn5转座酶是一种广泛应用于基因组学研究的工具酶,以下是关于Tn5转座酶的详细介绍: 1. 来源与特性 Tn5转座酶来源于大肠杆菌(E. coli),是一种经过改造的突变体,具有极高的活性。它能够特异性识别转座子两端的反向重复序列(如嵌合端Mosaic End, ME),并随机将转座子插入目标DNA序列中。这种转座酶在原核和真核生物的DNA中都表现出高效的插入能力。 2. 作用机制 Tn5转座酶通过形成转座复合体,催化四个磷酸转移反应(包括DNA切割、发夹形成、发夹分解和链转移到目标DNA),从而将转座子整合到新的DNA位点。其插入位点具有一定的随机性,但也有偏好性,首选的DNA靶序列是A-GNT(T/C)(A/T)(A/G)ANC-T。 3. 应用领域 基因组学研究 Tn5转座酶被广泛应用于基因组学研究,尤其是在ATAC-seq(染色质开放性测序)中。它可以识别染色质上的开放区域,剪切DNA片段,并在剪切的同时插入特定序列,从而用于分析基因组的开放性区域。 高通量测序文库构建 Tn5转座酶能够高效地将DNA片段打断并连接接头序列,因此被广泛用于二代测序文库的构建。它能够在单个反应中完成片段化和接头连接,大大简化了文库构建的步骤。 转基因技术 Tn5转座酶可以将外源基因插入宿主细胞基因组中,用于构建转基因细胞系或模型生物。其插入的随机性和高效性使其成为一种理想的基因插入工具。 4. 优势

  • 高效性:Tn5转座酶具有极高的活性,能够在短时间内完成DNA片段的插入。
  • 随机性:其插入位点具有较高的随机性,适用于需要广泛插入的应用场景。
  • 多功能性:除了基因插入,Tn5转座酶还被用于基因组片段化和接头连接,广泛应用于高通量测序。

5. 使用注意事项

  • 保存条件:Tn5转座酶通常需要在-80℃保存,解冻后可在-20℃保存2个月。
  • 反应体系:在使用Tn5转座酶进行高通量测序文库构建时,需要根据具体应用优化反应体系和条件。

Tn5转座酶因其高效性和多功能性,已成为基因组学研究和高通量测序中不可或缺的工具。

Generalized ATAC-seq library preparation protocol

数据分析流程

  • 1、比对, 去接头, 和去除线粒体 reads
  • 2、reads 去重复
  • 3、生成信号轨迹图
  • 4、Peak Calling
  • 5、下游分析

ATAC-seq general workflow

非常详细的 ATAC-seq 数据分析指导资源

Title and

author

Notes

link

ATAC-seq data analysis: from FASTQ to peaks

Yiwei Niu,Last updated: 2019

Blog style walkthrough of generalized ATAC-seq data analysis.

https://yiweiniu.github.io/blog/2019/03/ATAC-seq-data-analysis-from-FASTQ-to-peaks/

BIOINF525 Lab 3.2

Steve Parker,Last updated: 2016

Minimal standard ATAC-seq analysis walkthrough.

https://github.com/ParkerLab/

Analysis of ATAC-seq data in R and Bioconductor

Rockefeller Bioinformatics Resource, Last updated: 2018

Bioconductor ATAC-seq analysis course.

https://rockefelleruniversity.github.io/RU_ATACseq/

ATAC-seq

John M. Gaspar,Last updated: 2019

Generalized ATAC-seq analysis walkthrough with included custom scripts.

https://github.com/harvardinformatics/ATAC-seq

ATAC-seq data analysis

Delisle L; Doyle M; & Heyl F,Last updated: 2020

Galaxy training walkthrough of generalized ATAC-seq analysis.

https://galaxyproject.github.io/training-material/topics/epigenetics/tutorials/atac-seq/tutorial.html

ATAC-seq 原始数据处理 Pipelines

软件名

Language

Notes

Docs

Citation

AIAP

Bash; R; Python

Optimized analysis with novel QC metrics

++

Liu et al. (2019) Last updated: 2019

ATAC2GRN

Bash; Python

Parameter optimized ATAC-seq pipeline

+

Pranzatelli, Michael, & Chiorini (2018) Last updated: 2018

ATAC-pipe

Python; R

Analysis pipeline for ATAC-seq data including TF footprinting; cell-type classification; and regulatory network creation

+++

Zuo et al. (2019) Last updated: 2019

ATACProc

Bash; Python; R

Complete pipeline with additional downstream analyses included

++

Unpublished Last updated: 2019

Basepair

NA

Commercial. Web-based GUI for complete analysis

?

Unpublished

CIPHER

R; Perl; Python

A data processing platform for ChIP-seq; RNA-seq; MNase-seq; DNase-seq; ATAC-seq; and GRO-seq datasets

+

Guzman & D’Orso (2017) Last updated: 2017

ENCODE

Python; Bash

Complete pipeline following ENCODE standards for ATAC/DNase-seq analysis

++

Unpublished Last updated: 2020

esATAC

R

Complete pipeline including downstream analyses

+++

Wei, Zhang, Fang, Li, & Wang (2018) Last updated: 2019

GUAVA

Java; Python; R

GUI based complete ATAC-seq pipeline

+

Divate & Cheung (2018) Last updated: 2019

I-ATAC

Java

GUI based interactive ATAC-seq pipeline

+

Ahmed & Ucar (2017) Last updated: 2017

nfcore/atacseq

Python; R

Complete pipeline build using Nextflow

+++

Ewels et al. (2019) Last updated: 2019

PEPATAC

Python; R; Perl

Complete pipeline with unique analytical approaches and QC metrics

+++

Unpublished Last updated: 2019

pyflow-ATACseq

Bash; Python

ATAC-seq snakemake pipeline with included nucleosome positioning and TF footprinting

++

Unpublished Last updated: 2019

snakePipes ATAC-seq

Python

Workflow system including ATAC-seq analysis

+++

Bhardwaj et al. (2019) Last updated: 2019

Tobias Rausch

Bash; R; Python

Complete pipeline with emphasis on downstream analyses

++

Rausch et al. (2019) Last updated: 2020

ATAC-seq 数据质控工具

Languages

Notes

Docs

Citation

ATAqC

Bash; Python

Generate ATAC-seq specific quality control metrics.

+

Unpublished Last updated: 2017

ATACseqQC

R

Provides ATAC-seq specific quality control metrics and transcription factor footprinting.

+++

Ou et al. (2018) Last updated: 2018

ataqv

C++; Bash

ATAC-seq QC and visualization.

+++

Orchard, Kyono, Hensley, Kitzman, & Parker (2020) Last updated: 2020

Peak Calling 工具

软件名

Languages

Notes

Docs

Citation

F-Seq

Java

Can be used as general peak caller to identify regions of open chromatin.

++

Boyle et al. (2008) Last updated: 2016

Genrich

C

Peak caller for genomic enrichment assays with specific ATAC-seq mode.

+++

unpublished Last updated: 2020

HMMRATAC

Java

Identify nucleosome positioning and leverage ATAC-seq specific read outs to call peaks.

+++

Tarbell & Liu (2019) Last updated: 2020

Hotspot2

C++

Identify significantly enriched genomic regions.

++

Unpublished Last updated: 2019

HOMER

Perl; C++

Suite of tools that include the ability to call peaks from DNA enrichment assays.

+++

Heinz et al. (2010) Last updated: 2010

MACS2

Python

Specifically designed for CHiP-seq but broadly applicable to any DNA enrichment assay to call peaks.

+++

Zhang et al. (2020) Last updated: 2020

PeaKDEck

Perl

Peak calling program for DNase-seq data.

+++

McCarthy & O’Callaghan (2014) Last updated: 2014

差异可及区域分析工具

软件

Languages

Notes

Docs

Citation

DAStk

Python

Identifies changes in transcription factor activity by looking at changes in chromatin accessibility

+++

Tripodi et al. (2018) Last updated: 2020

diffTF

Python; R

Identifies differential transcription factors. Can operate in basic mode with just chromatin accessibility or in classification mode where it integrates RNA-seq.

+++

Berest et al. (2019) Last updated: 2020

Motif 富集 和转录因子 Footprinting 工具

Languages

Notes

Docs

Citation

BiFET

R

Identify overrepresented transcription factor footprints.

++

Youn et al. (2019) Last updated: 2019

BinDNase

R

Transcription factor binding prediction using DNase-seq.

+

Kähärä & Lähdesmäki (2015) Last updated: 2015

CENTIPEDE

R

Transcription factor footprinting and binding site prediction.

++

Pique-Regi et al. (2011) Last updated: 2010

DeFCoM

Python

Detecting transcription factor footprints and underlying motifs using supervised learning.

+++

Quach & Furey (2017) Last updated: 2017

DNase2TF

R

Identify footprint candidates from DNase-seq data on user-specified regions.

+

Sung et al. (2014) Last updated: 2017

HINT-ATAC

Python

Use open chromatin data to identify transcription factor footprints with modifications specific to ATAC-seq data.

+++

Li et al. (2019) Last updated: 2019

HOMER

Perl; C++

A suite of tools for motif discovery and enrichment.

+++

Heinz et al. (2010) Last updated: 2019

MEME Suite

Perl; Python

Suite of tools for motif discovery; enrichment; and GO term analyses.

+++

Bailey et al. (2009) Last updated: 2020

PIQ

Bash; R

Models genome-wide DNase profiles to identify transcription factor binding sites.

++

Sherwood et al. (2014) Last updated: 2016

TOBIAS

Python

Identify transcription factor footprints.

++

Bentsen et al. (2019) Last updated: 2020

TRACE

Python

Transcription factor footprinting.

++

Ouyang & Boyle (2019) Last updated: 2020

Wellington

Python

Identify TF footprints using DNase-seq data.

+++

Piper et al. (2013) Last updated: 2019

核小体定位分析工具

软件

Languages

Notes

Docs

Citation

HMMRATAC

Java

Identify nucleosome positioning and leverage ATAC-seq specific read outs to call peaks.

+++

Tarbell & Liu (2019) Last updated: 2020

NucleoATAC

Python; R

Call nucleosomes using ATAC-seq data.

+++

Schep et al. (2015) Last updated: 2019

NucTools

Perl; R

Calculate nucleosome occupancy profiles on chromatin accessibility data.

+++

Vainshtein et al. (2017) Last updated: 2019

区域富集分析工具

软件

Languages

Notes

Docs

Citation

Annotatr

R

Annotate summarize and visualize genomic regions.

+++

Cavalcante & Sartor (2017) Last updated: 2019

BART/BARTweb

Python

Predict factors that bind at cis-regulatory regions.

+++

Wang et al. (2018) Last updated: 2020

chipenrich

R

Perform gene set enrichment testing using genomic regions.

+++

Welch et al. (2014) Last updated: 2020

coloc-stats

Python

Perform co-localization analysis of genomic regions.

+++

Simovski et al. (2018) Last updated: 2019

COLO

JSP

Identify genomic features in close proximity to user-submitted genomic regions.

++

Kim et al. (2015) Last updated: 2015

FEATnotator

Perl; R

Annotate genomic regions.

++

Podicheti & Mockaitis (2015) Last updated: 2018

GenomeRunner

.NET

Perform annotation and enrichment of genomic regions against default or custom regulatory regions.

++

Dozmorov et al. (2016) Last updated: 2016

GenometriCorr

R

Determine spatial correlation between region sets.

++

Favorov et al. (2012) Last updated: 2020

Genomic Association Tester

Python

Calculate the significance of overlaps between multiple genomic region sets.

+++

Heger et al. (2013) Last updated: 2019

GIGGLE

C

Genomics search engine to uncover significantly shared genomic loci (regions) between data.

+++

Layer et al. (2018) Last updated: 2019

GLANET

Java; Perl

Genomic loci annotation and enrichment tool between sets of genomic regions.

+++

Otlu et al. (2017) Last updated: 2019

GREAT

C

Annotate genomic regions.

+++

McLean et al. (2010) Last updated: 2019

LOLA/LOLAweb

R

Determine significant enrichment between region sets to inform on biological meaning.

+++

Sheffield & Bock (2016) Last updated: 2019

regioneR

R

Evaluate significant associations between region sets using permutation testing.

+++

Gel et al. (2016) Last updated: 2020

StereoGene

C++; R

Estimate genome-wide correlation between pairs of genomic features.

++

Stavrovskaya et al. (2017) Last updated: 2019

单细胞 scATAC-seq 数据处理工具

软件

Languages

Notes

Docs

Citation

BAP

R; Python

Bead-based scATAC-seq data processing.

++

Lareau et al. (2019) Last updated: 2019

BROCKMAN

R; Bash; Ruby

Convert genomics data into K-mer words associated with chromatin marks used to compare and identify changes across samples.

++

de Boer & Regev (2018) Last updated: 2018

Cell Ranger ATAC

NA

Commercial. Set of analysis pipelines for Chromium single cell ATAC-seq.

+++

Unpublished

chromVAR

R

Identify transcription factor accessibility in single-cell data. Enables clustering of single-cell ATAC-seq data.

+++

Schep et al. (2017) Last updated: 2019

Cicero

R

Predict cis-regulatory DNA interactions using single-cell chromatin accessibility data.

+++

Pliner et al. (2018) Last updated: 2019

cisTopic

R

Identify cell states and cis-regulatory topics from single-cell data.

+++

Bravo González-Blas et al.(2019) Last updated: 2019

scABC

R

Classify single-cell ATAC using unsupervised clustering and identify chromatin regions specific to cell identity.

+

Zamanighomi et al. (2018) Last updated: 2019

SCALE

Python

Clustering and visualization of single-cell ATAC-seq data into interpretable cell populations.

++

Xiong et al. (2019) Last updated: 2019

Scasat

Bash; Python; R

Complete pipeline to process scATAC-seq data with simple steps.

+++

Baker et al. (2019) Last updated: 2019

scATAC-pro

R; Python

Comprehensive pipeline for single cell ATAC-seq analysis.

+++

Yu et al. (2019) Last updated: 2020

scOpen

Python

Chromatin-accessibility estimation of single-cell ATAC data.

+

Li et al. (2019) Last updated: 2020

SCRAT

R

Useful for studying single cell heterogeneity. Can identify changes in gene sets or transcription factor binding sites. Includes GUI and web-based service.

+++

Ji et al. (2017) Last updated: 2018

SnapATAC

R; Python

Single Nucleus Analysis Pipeline for ATAC-seq.

+++

Fang et al. (2019) Last updated: 2019

此外:作者维护了一个不断扩大的 ATAC-seq 工具列表,可前往关注:

https://github.com/databio/awesome-atac-analysis

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2025-01-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信技能树 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • ATAC-seq 全称
  • ATAC-seq的研究数量在短短几年内就接近1万项
  • ATAC-seq 实验原理图
    • 数据分析流程
  • 非常详细的 ATAC-seq 数据分析指导资源
  • ATAC-seq 原始数据处理 Pipelines
  • ATAC-seq 数据质控工具
  • Peak Calling 工具
  • 差异可及区域分析工具
  • Motif 富集 和转录因子 Footprinting 工具
  • 核小体定位分析工具
  • 区域富集分析工具
  • 单细胞 scATAC-seq 数据处理工具
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档