2025年1月20日,人工智能领域迎来里程碑式突破!深度求索(DeepSeek)正式发布新一代推理大模型DeepSeek-R1,不仅实现与OpenAI最新o1正式版的性能对标,更以全栈开放的生态布局引发行业震动。作为首个遵循MIT License开源协议的高性能推理模型,R1的发布将如何重构AI开发者的技术生态?其独创的"思维链API接口"又会给企业级应用带来哪些革新?
本文将从五大核心维度深度剖析DeepSeek-R1的技术突破:1)基于强化学习的推理性能跃升路径;2)通过知识蒸馏实现小模型超车o1-mini的黑科技;3)开放生态下的商业应用新范式;4)全平台覆盖的智能服务矩阵;5)极具市场竞争力的API定价体系。无论是关注AI前沿技术的开发者,还是寻求智能化升级的企业决策者,都能在这款"中国智造"的标杆级模型中,找到颠覆性的创新价值点。
model='deepseek-reasoner'
即可调用。
DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版。
在此,我们将 DeepSeek-R1 训练技术全部公开,以期促进技术社区的充分交流与创新协作。
论文链接: https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
我们在开源 DeepSeek-R1-Zero 和 DeepSeek-R1 两个 660B 模型的同时,通过 DeepSeek-R1 的输出,蒸馏了 6 个小模型开源给社区,其中 32B 和 70B 模型在多项能力上实现了对标 OpenAI o1-mini 的效果。
HuggingFace 链接: https://huggingface.co/deepseek-ai
为了推动和鼓励开源社区以及行业生态的发展,在发布并开源 R1 的同时,我们同步在协议授权层面也进行了如下调整:
登录DeepSeek官网或官方App,打开“深度思考”模式,即可调用最新版 DeepSeek-R1 完成各类推理任务。
DeepSeek-R1 API 服务定价为每百万输入 tokens 1 元(缓存命中)/ 4 元(缓存未命中),每百万输出 tokens 16 元。
详细的 API 调用指南请参考官方文档: https://api-docs.deepseek.com/zh-cn/guides/reasoning_model
deepseek-reasoner
)deepseek-reasoner
是 DeepSeek 推出的推理模型。在输出最终回答之前,模型会先输出一段思维链内容,以提升最终答案的准确性。我们的 API 向用户开放 deepseek-reasoner
思维链的内容,以供用户查看、展示、蒸馏使用。
在使用 deepseek-reasoner
时,请先升级 OpenAI SDK 以支持新参数。
pip3 install -U openai
max_tokens
:最终回答的最大长度(不含思维链输出),默认为 4K,最大为 8K。请注意,思维链的输出最多可以达到 32K tokens,控思维链的长度的参数(reasoning_effort
)将会在近期上线。reasoning_content
:思维链内容,与 content
同级,访问方法见访问样例content
:最终回答内容reasoning_content
长度不计入 64K 上下文长度中temperature
、top_p
、presence_penalty
、frequency_penalty
、logprobs
、top_logprobs
。请注意,为了兼容已有软件,设置 temperature
、top_p
、presence_penalty
、frequency_penalty
参数不会报错,但也不会生效。设置 logprobs
、top_logprobs
会报错。在每一轮对话过程中,模型会输出思维链内容(reasoning_content
)和最终回答(content
)。在下一轮对话中,之前轮输出的思维链内容不会被拼接到上下文中,如下图所示:
请注意,如果您在输入的 messages 序列中,传入了reasoning_content
,API 会返回 400
错误。因此,请删除 API 响应中的 reasoning_content
字段,再发起 API 请求,方法如访问样例所示。
下面的代码以 Python 语言为例,展示了如何访问思维链和最终回答,以及如何在多轮对话中进行上下文拼接。
from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
model="deepseek-reasoner",
messages=messages,
stream=True
)
reasoning_content = ""
content = ""
for chunk in response:
if chunk.choices[0].delta.reasoning_content:
reasoning_content += chunk.choices[0].delta.reasoning_content
else:
content += chunk.choices[0].delta.content
# Round 2
messages.append({"role": "assistant", "content": content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
model="deepseek-reasoner",
messages=messages,
stream=True
)
# ...
from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
model="deepseek-reasoner",
messages=messages
)
reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content
# Round 2
messages.append({'role': 'assistant', 'content': content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
model="deepseek-reasoner",
messages=messages
)
# ...
DeepSeek-R1的横空出世,标志着国产大模型在关键技术领域实现质的突破。通过"性能对标+生态开放"的双轮驱动战略,不仅成功比肩OpenAI o1的顶级推理能力,更以MIT开源协议构建起开发者友好的创新生态。其独创的思维链API接口与动态蒸馏技术,为企业降本增效提供了全新解决方案。
随着模型权重和训练框架的全面开放,我们有理由预见:在R1的技术底座上,将涌现出更多垂直领域的智能应用。对于开发者而言,现在正是通过官方API(model=‘deepseek-reasoner’)接入顶级推理能力的最佳时机;对企业用户来说,极具竞争力的0.002美元/千token定价策略,将大幅降低AI部署成本。这场由DeepSeek-R1引发的智能革命,正在开启通用人工智能普惠化的新纪元。
(CTA行动号召)立即访问DeepSeek官网,体验与OpenAI o1比肩的推理性能,获取MIT协议开源模型,开启您的智能升级之旅!
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有