OpenManus 出现后,邀请码一票难求,开源项目 OpenManus 团队称仅用3 小时就实现了初步功能,网传 OpenManus 提示词以及底层使用工具被爆出,现在你不用等邀请码,本文教你本地部署开源项目 OpenManus ,可直接对接本地私有大模型。
不得不说这个开源项目短短一周多,star 截止本文发布前已经 34.1k,让子弹飞一会儿~。
提前准备安装 python 3.12+ 【点击下载】和 anaconda 【点击前往】,不会的话请询问各大 ai 大模型。
创建新的 conda 环境:
conda create -n open_manus python=3.12
conda activate open_manus
克隆源码仓库
git clone https://github.com/mannaandpoem/OpenManus.git
cd OpenManus
安装必要依赖
pip install -r requirements.txt
修改默认配置文件
OpenManus 需要配置使用的 LLM API,请按以下步骤设置:
复制 config
目录下的示例配置文件:
cp config/config.example.toml config/config.toml
编辑 config/config.toml
添加 API 密钥和自定义设置:可以替换成各大平台包括本地 ollama 的,模型必须支持必须使用支持 function calling 的模型才可以,视觉模型根据实际需要进行修改。主要修改下面的内容:
# 全局 llm 配置
[llm]
model = "gpt-4o"
base_url = "https://api.openai.com/v1"
api_key = "sk-..." # 替换为真实 API 密钥
max_tokens = 4096
temperature = 0.0
# 可选视觉模型
[llm.vision]
model = "gpt-4o"
base_url = "https://api.openai.com/v1"
api_key = "sk-..." # 替换为真实 API 密钥
max_tokens = 8192 # Maximum number of tokens in the response
temperature = 0.0 # Controls randomness for vision model
# [llm] #AZURE OPENAI:
# api_type= 'azure'
# model = "YOUR_MODEL_NAME" #"gpt-4o-mini"
# base_url = "{YOUR_AZURE_ENDPOINT.rstrip('/')}/openai/deployments/{AZURE_DEPOLYMENT_ID}"
# api_key = "AZURE API KEY"
# max_tokens = 8096
# temperature = 0.0
# api_version="AZURE API VERSION" #"2024-08-01-preview"
# [llm] #OLLAMA:
# api_type = 'ollama'
# model = "llama3.2"
# base_url = "http://localhost:11434/v1"
# api_key = "ollama"
# max_tokens = 4096
# temperature = 0.0
# [llm.vision] #OLLAMA VISION:
# api_type = 'ollama'
# model = "llama3.2-vision"
# base_url = "http://localhost:11434/v1"
# api_key = "ollama"
# max_tokens = 4096
# temperature = 0.0
# Optional configuration for specific browser configuration
# [browser]
# Whether to run browser in headless mode (default: false)
#headless = false
# Disable browser security features (default: true)
#disable_security = true
# Extra arguments to pass to the browser
#extra_chromium_args = []
# Path to a Chrome instance to use to connect to your normal browser
# e.g. '/Applications/Google Chrome.app/Contents/MacOS/Google Chrome'
#chrome_instance_path = ""
# Connect to a browser instance via WebSocket
#wss_url = ""
# Connect to a browser instance via CDP
#cdp_url = ""
# Optional configuration, Proxy settings for the browser
# [browser.proxy]
# server = "http://proxy-server:port"
# username = "proxy-username"
# password = "proxy-password"
# Optional configuration, Search settings.
# [search]
# Search engine for agent to use. Default is "Google", can be set to "Baidu" or "DuckDuckGo".
#engine = "Google"
运行项目
python main.py
如需体验不稳定的开发版本,可运行:
python run_flow.py
输入你要干的事情,它可以完全自动调用浏览器,打开并浏览,查询并收集需要的信息