索引:提高数据库的性能,索引是物美价廉的东西了。不用加内存,不用改程序,不用调sql,只要执行正确的 create index ,查询速度就可能提高成百上千倍。但是天下没有免费的午餐,查询速度的提高是以插入、更新、删除的速度为代价的,这些写操作,增加了大量的IO。所以它的价值,在于提高一个海量数据的检索速度。
常见索引分为:
先整一个海量表,在查询的时候,看看没有索引时有什么问题?
--构建一个8000000条记录的数据
--构建的海量表数据需要有差异性,所以使用存储过程来创建, 拷贝下面代码就可以了,暂时不用理解
-- 产生随机字符串
delimiter $$
create function rand_string(n INT)
returns varchar(255)
begin
declare chars_str varchar(100) default
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
declare return_str varchar(255) default '';
declare i int default 0;
while i < n do
set return_str =concat(return_str,substring(chars_str,floor(1+rand()*52),1));
set i = i + 1;
end while;
return return_str;
end $$
delimiter ;
--产生随机数字
delimiter $$
create function rand_num()
returns int(5)
begin
declare i int default 0;
set i = floor(10+rand()*500);
return i;
end $$
delimiter ;
--创建存储过程,向雇员表添加海量数据
delimiter $$
create procedure insert_emp(in start int(10),in max_num int(10))
begin
declare i int default 0;
set autocommit = 0;
repeat
set i = i + 1;
insert into EMP values ((start+i)
,rand_string(6),'SALESMAN',0001,curdate(),2000,400,rand_num());
until i = max_num
end repeat;
commit;
end $$
delimiter ;
-- 执行存储过程,添加8000000条记录
call insert_emp(100001, 8000000);
到此,已经创建出了海量数据的表了。
select * from EMP where empno=998877;
可以看到耗时4.93秒,这还是在本机一个人来操作,在实际项目中,如果放在公网中,假如同时有 1000个人并发查询,那很可能就死机。
解决方法:创建索引
alter table EMP add index(empno);
增加索引之后,检索时间就会大幅度减少,这就是索引的价值
MySQL 作为一款应用软件,可以想象成一种特殊的文件系统。它有着更高的IO场景,所以,为了提高基本的IO效率, MySQL 进行IO的基本单位是 16KB (后面统一使用 InnoDB 存储引擎讲解)
mysql> SHOW GLOBAL STATUS LIKE 'innodb_page_size';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| Innodb_page_size | 16384 | -- 16*1024=16384
+------------------+-------+
1 row in set (0.01 sec)
也就是说,磁盘这个硬件设备的基本单位是 512 字节,而 MySQL InnoDB引擎 使用 16KB 进行IO交互。 即, MySQL 和磁盘进行数据交互的基本单位是 16KB 。这个基本数据单元,在 MySQL 这里叫做page(注意和系统的page区分)
建立测试表
create table if not exists user (
id int primary key, --一定要添加主键哦,只有这样才会默认生成主键索引
age int not null,
name varchar(16) not null
);
mysql> show create table user \G
*************************** 1. row ***************************
Table: user
Create Table: CREATE TABLE `user` (
`id` int(11) NOT NULL,
`age` int(11) NOT NULL,
`name` varchar(16) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 --默认就是InnoDB存储引擎
1 row in set (0.00 sec)
HOW CREATE TABLE user \G
是一个用于查看表结构的命令。\G
是一个MySQL客户端的特殊修饰符,它会让查询结果以垂直格式(每列单独一行)显示,而不是默认的表格格式。这在处理包含多列或长文本的查询结果时特别有用。
插入多条记录
--插入多条记录,注意,我们并没有按照主键的大小顺序插入哦
mysql> insert into user (id, age, name) values(3, 18, '杨过');
Query OK, 1 row affected (0.01 sec)
mysql> insert into user (id, age, name) values(4, 16, '小龙女');
Query OK, 1 row affected (0.00 sec)
mysql> insert into user (id, age, name) values(2, 26, '黄蓉');
Query OK, 1 row affected (0.01 sec)
mysql> insert into user (id, age, name) values(5, 36, '郭靖');
Query OK, 1 row affected (0.00 sec)
mysql> insert into user (id, age, name) values(1, 56, '欧阳锋');
Query OK, 1 row affected (0.00 sec)
查看插入结果:
mysql> select * from user; --发现竟然默认是有序的!是谁干的呢?排序有什么好处呢?
+----+-----+-----------+
| id | age | name |
+----+-----+-----------+
| 1 | 56 | 欧阳锋 |
| 2 | 26 | 黄蓉 |
| 3 | 18 | 杨过 |
| 4 | 16 | 小龙女 |
| 5 | 36 | 郭靖 |
+----+-----+-----------+
5 rows in set (0.00 sec)
为何MySQL和磁盘进行IO交互的时候,要采用Page的方案进行交互呢?用多少,加载多少不香吗? 如上面的5条记录,如果MySQL要查找id=2的记录,第一次加载id=1,第二次加载id=2,一次一条记录,那么就需要2次IO。如果要找id=5,那么就需要5次IO。 但,如果这5条(或者更多)都被保存在一个Page中(16KB,能保存很多记录),那么第一次IO查找id=2的时候,整个Page会被加载到MySQL的Buffer Pool中,这里完成了一次IO。但是往后如果在查找id=1,3,4,5等,完全不需要进行IO了,而是直接在内存中进行了。所以,就在单Page里面,大大减少了IO的次数。 你怎么保证,用户一定下次找的数据,就在这个Page里面?我们不能严格保证,但是有很大概率,因为有局部性原理。 往往IO效率低下的最主要矛盾不是IO单次数据量的大小,而是IO的次数。
MySQL 中要管理很多数据表文件,而要管理好这些文件,就需要 先描述,在组织 ,我们目前可以简单理解成一个个独立文件是有一个或者多个Page构成的。
不同的 Page ,在 MySQL 中,都是 16KB ,使用 prev 和 next 构成双向链表 因为有主键的问题, MySQL 会默认按照主键给我们的数据进行排序,从上面的Page内数据记录可以看出,数据是有序且彼此关联的。
插入数据时排序的目的,就是优化查询的效率。 页内部存放数据的模块,实质上也是一个链表的结构,链表的特点也就是增删快,查询修改慢,所以优化查询的效率是必须的。 正式因为有序,在查找的时候,从头到后都是有效查找,没有任何一个查找是浪费的,而且,如果运气好,是可以提前结束查找过程的。
我们在看《谭浩强C程序设计》这本书的时候,如果我们要看<指针章节>,找到该章节有两种做法
针对上面的单页Page,我们能否也引入目录呢?当然可以
那么当前,在一个Page内部,我们引入了目录。比如,我们要查找id=4记录,之前必须线性遍历4次,才能拿到结果。现在直接通过目录2[3],直接进行定位新的起始位置,提高了效率。现在我们可以再次正式回答上面的问题了,为何通过键值 MySQL 会自动排序? 可以很方便引入目录!
MySQL 中每一页的大小只有 16KB ,单个Page大小固定,所以随着数据量不断增大, 16KB 不可能存下所有的数据,那么必定会有多个页来存储数据。
在单表数据不断被插入的情况下, MySQL 会在容量不足的时候,自动开辟新的Page来保存新的数据,然后通过指针的方式,将所有的Page组织起来。 需要注意,上面的图,是理想结构,大家也知道,目前要保证整体有序,那么新插入的数据,不一定会在新Page上面,这里仅仅做演示。
这样,我们就可以通过多个Page遍历,Page内部通过目录来快速定位数据。可是,貌似这样也有效率问题,在Page之间,也是需要 MySQL 遍历的,遍历意味着依旧需要进行大量的IO,将下一个Page加载到内存,进行线性检测。这样就显得我们之前的Page内部的目录,有点杯水车薪了。
那么如何解决呢?解决方案,其实就是我们之前的思路,给Page也带上目录。 使用一个目录项来指向某一页,而这个目录项存放的就是将要指向的页中存放的最小数据的键值。 和页内目录不同的地方在于,这种目录管理的级别是页,而页内目录管理的级别是行。 其中,每个目录项的构成是:键值+指针。图中没有画全。
存在一个目录页来管理页目录,目录页中的数据存放的就是指向的那一页中最小的数据。有数据,就可通过比较,找到该访问那个Page,进而通过指针,找到下一个Page。 其实目录页的本质也是页,普通页中存的数据是用户数据,而目录页中存的数据是普通页的地址。
可是,我们每次检索数据的时候,该从哪里开始呢?虽然顶层的目录页少了,但是还要遍历啊?不用担心,可以再加目录页!
这货就是传说中的B+树啊!没错,至此,我们已经给我们的表user构建完了主键索引。
随便找一个id=?我们发现,现在查找的Page数一定减少了,也就意味着IO次数减少了,那么效率也就提高了。
B树?最值得比较的是 InnoDB 为何不用B树作为底层索引?
B树
B+树
MyISAM 存储引擎-主键索引 MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。
下图为 MyISAM表的主索引, Col1 为主键。
其中, MyISAM 最大的特点是,MyISAM将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据的地址。 相较于 InnoDB 索引, InnoDB 是将索引和数据放在一起的。
创建MyISAM索引的方法:
-终端A
mysql> create database myisam_test; --创建数据库
Query OK, 1 row affected (0.00 sec)
mysql> use myisam_test;
Database changed
mysql> create table mtest(
-> id int primary key,
-> name varchar(11) not null
-> )engine=MyISAM; --使用engine=MyISAM
其中, InnoDB 这种用户数据与索引数据在一起索引方案,叫做聚簇索引。
WHERE id BETWEEN 1 AND 100
)效率高,因为数据是物理连续的。ORDER BY id
)无需排序。WHERE username = 'Alice'
)效率高,但范围查询可能需要回表。WHERE date BETWEEN '2023-01-01' AND '2023-12-31'
)。第一种方式
-- 在创建表的时候,直接在字段名后指定 primary key
create table user1(id int primary key, name varchar(30));
第二种方式
-- 在创建表的最后,指定某列或某几列为主键索引
create table user2(id int, name varchar(30), primary key(id));
第三种方式
create table user3(id int, name varchar(30));
-- 创建表以后再添加主键
alter table user3 add primary key(id);
第一种方式
-- 在表定义时,在某列后直接指定unique唯一属性。
create table user4(id int primary key, name varchar(30) unique);
第二种方式
-- 创建表时,在表的后面指定某列或某几列为unique
create table user5(id int primary key, name varchar(30), unique(name));
第三种方式
create table user6(id int primary key, name varchar(30));
alter table user6 add unique(name);
第一种方式
create table user8(id int primary key,
name varchar(20),
email varchar(30),
index(name) --在表的定义最后,指定某列为索引
);
第二种方式
create table user9(id int primary key, name varchar(20), email
varchar(30));
alter table user9 add index(name); --创建完表以后指定某列为普通索引
第三种方式
create table user10(id int primary key, name varchar(20), email
varchar(30));
-- 创建一个索引名为 idx_name 的索引
create index idx_name on user10(name);
一个表中可以有多个普通索引,普通索引在实际开发中用的比较多 如果某列需要创建索引,但是该列有重复的值,那么我们就应该使用普通索引
第一种方法: show keys from 表名
mysql> show keys from goods\G
*********** 1. row ***********
Table: goods <= 表名
Non_unique: 0 <= 0表示唯一索引
Key_name: PRIMARY <= 主键索引
Seq_in_index: 1
Column_name: goods_id <= 索引在哪列
Collation: A
Cardinality: 0
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE <= 以二叉树形式的索引
Comment:
1 row in set (0.00 sec)
第二种方法: show index from 表名; 第三种方法(信息比较简略): desc 表名;