一个全连接ReLU神经网络,一个隐藏层,没有bias。用来从x预测y,使用L2 Loss。 这一实现完全使用numpy来计算前向神经网络,loss,和反向传播。 numpy ndarray是一个普通的n维array。它不知道任何关于深度学习或者梯度(gradient)的知识,也不知道计算图(computation graph),只是一种用来计算数学运算的数据结构。 import numpy as np # N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = 64, 1000, 100, 10 # Create random input and output data x = np.random.randn(N, D_in) y = np.random.randn(N, D_out) # Randomly initialize weights w1 = np.random.randn(D_in, H) w2 = np.random.randn(H, D_out) learning_rate = 1e-6 for t in range(500): # Forward pass: compute predicted y h = x.dot(w1) h_relu = np.maximum(h, 0) y_pred = h_relu.dot(w2) # Compute and print loss loss = np.square(y_pred - y).sum() print(t, loss) # Backprop to compute gradients of w1 and w2 with respect to loss # loss = (y_pred - y) ** 2 grad_y_pred = 2.0 * (y_pred - y) # grad_w2 = h_relu.T.dot(grad_y_pred) grad_h_relu = grad_y_pred.dot(w2.T) grad_h = grad_h_relu.copy() grad_h[h < 0] = 0 grad_w1 = x.T.dot(grad_h) # Update weights w1 -= learning_rate * grad_w1 w2 -= learning_rate * grad_w2 总结:从上面可以看出,所谓神经网络本质就是前向传播--->求LOSS--->反向传播求梯度---->更新权重。面试经常问这个必须要掌握哦 |
---|