首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >[大模型]XVERSE-MoE-A4.2B Transformers 部署调用

[大模型]XVERSE-MoE-A4.2B Transformers 部署调用

作者头像
云未归来
发布2025-07-21 11:06:41
发布2025-07-21 11:06:41
13100
代码可运行
举报
运行总次数:0
代码可运行

XVERSE-MoE-A4.2B介绍

XVERSE-MoE-A4.2B 是由深圳元象科技自主研发的支持多语言的大语言模型(Large Language Model),使用混合专家模型(MoE,Mixture-of-experts)架构,模型的总参数规模为 258 亿,实际激活的参数量为 42 亿,本次开源的模型为底座模型 XVERSE-MoE-A4.2B,主要特点如下:

  • 模型结构:XVERSE-MoE-A4.2B 为 Decoder-only 的 Transformer 架构,将密集模型的 FFN 层扩展为专家层,不同于传统 MoE 中每个专家的大小与标准 FFN 相同(如Mixtral 8x7B ),使用了更细粒度的专家,每个专家是标准 FFN 大小的 1/4,并设置了共享专家(Shared Expert)和非共享专家(Non-shared Expert)两类,共享专家在计算时始终被激活,非共享专家通过 Router 选择性激活。
  • 训练数据:构建了 2.7 万亿 token 的高质量、多样化的数据对模型进行充分训练,包含中、英、俄、西等 40 多种语言,通过精细化设置不同类型数据的采样比例,使得中英两种语言表现优异,也能兼顾其他语言效果;模型使用 8K 长度的训练样本进行训练。
  • 训练框架:针对 MoE 模型中独有的专家路由和权重计算逻辑,进行了深入定制优化,开发出一套高效的融合算子,以提升计算效率。同时,为解决 MoE 模型显存占用和通信量大的挑战,设计了计算、通信和 CPU-Offload 的 Overlap 处理方式,从而提高整体吞吐量。

XVERSE-MoE-A4.2B 的模型大小、架构和学习率如下:

total params

activated params

n_layers

d_model

n_heads

d_ff

n_non_shared_experts

n_shared_experts

top_k

lr

25.8B

4.2B

28

2560

32

1728

64

2

6

3.5e−4

但是 XVERSE 的仓库并没有更新更多的实践案例,还是需要大家丰富一下的,我有时间也会分享更多案例的。 有关 XVERSE-MoE-A4.2B 模型的相关报告可以看:元象首个MoE大模型开源:4.2B激活参数,效果堪比13B模型

讲讲显存计算

显存计算的考虑会随着模型类型不同,任务不同而变化

这里的Transformers部署调用是推理任务,因而只需要考虑模型参数、KV Cache、中间结果和输入数据。这里的模型为MoE模型,考虑完整模型参数(25.8B);使用了bf16加载,再考虑中间结果、输入数据和KV Cache等,大概是2x1.2x25.8的显存需求,所以我们后面会选择三卡共72G显存,显存要求还是挺大的大家根据自己条件自行尝试吧。

更完整的显存计算参照这个blog:【Transformer 基础系列】手推显存占用

环境准备

在autodl平台中租一个三卡3090等24G(共计72G)显存的机器,如下图所示镜像选择PyTorch–>2.1.0–>3.10(ubuntu22.04)–>12.1 接下来打开刚刚租用服务器的JupyterLab, 图像 并且打开其中的终端开始环境配置、模型下载和运行演示。

pip换源和安装依赖包

代码语言:javascript
代码运行次数:0
运行
复制
# 因为涉及到访问github因此最好打开autodl的学术镜像加速
source /etc/network_turbo
# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
# 从transformers的github仓库中安装包含XVERSE-MoE的新版本
# 如果安装不上可以使用 pip install git+https://github.moeyy.xyz/https://github.com/huggingface/transformers
pip install git+https://github.com/huggingface/transformers
# 安装需要的python包
pip install modelscope sentencepiece accelerate fastapi uvicorn requests streamlit transformers_stream_generator
# 安装flash-attention
# 这个也是不行使用 pip install https://github.moeyy.xyz/https://github.com/Dao-AILab/flash-attention/releases/download/v2.4.2/flash_attn-2.4.2+cu122torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.4.2/flash_attn-2.4.2+cu122torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

模型下载

使用ModelScope下载模型

代码语言:javascript
代码运行次数:0
运行
复制
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('xverse/XVERSE-MoE-A4.2B', cache_dir='/root/autodl-tmp', revision='master')

代码准备

在/root/autodl-tmp路径下新建trains.py文件并在其中输入以下内容

代码语言:javascript
代码运行次数:0
运行
复制
import torch  # 导入torch库,用于深度学习相关操作
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig  # 三个类分别用于加载分词器、加载因果语言模型和加载生成配置

# 将模型路径设置为刚刚下载的模型路径
model_name = "/root/autodl-tmp/xverse/XVERSE-MoE-A4.2B"

# 加载语言模型,设置数据类型为bfloat16即混合精度格式以优化性能并减少显存使用,将推理设备设置为`auto`自动选择最佳的设备进行推理,如果没有可用的GPU,它可能会回退到CPU
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")

# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(model_name)

# 定义input字符串
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
# 使用分词器的apply_chat_template方法来处理messages,转换格式
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True # 在消息前添加生成提示
)
# 将text变量中的文本转换为模型输入的格式,指定返回的张量为PyTorch张量("pt")
model_inputs = tokenizer([text], return_tensors="pt").to(device)
# 使用模型的generate方法来生成文本
generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
# 从生成的ID中提取出除了原始输入之外的新生成的token
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
# 使用分词器的batch_decode方法将生成的token ID转换回文本
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# 显示生成的回答
print(response)
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-06-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • XVERSE-MoE-A4.2B介绍
  • 讲讲显存计算
  • 环境准备
  • 模型下载
  • 代码准备
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档