首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >TTS-1技术报告:基于Transformer的文本转语音模型

TTS-1技术报告:基于Transformer的文本转语音模型

原创
作者头像
用户11764306
发布2025-07-30 21:33:42
发布2025-07-30 21:33:42
3070
举报

TTS-1技术报告

我们介绍了Inworld TTS-1,这是一组两个基于Transformer的自回归文本转语音(TTS)模型。我们最大的模型TTS-1-Max拥有88亿参数,专为要求苛刻的应用场景提供最高质量和表现力。TTS-1是我们最高效的模型,具有16亿参数,专为实时语音合成和边缘设备用例而构建。

通过扩展训练计算量并应用语音语言模型(SpeechLM)组件的预训练、微调和RL对齐的序列化流程,这两个模型在各种基准测试中都实现了最先进的性能,仅依靠说话者语音的上下文学习就展现出卓越的质量。

Inworld TTS-1和TTS-1-Max能够以低延迟生成48kHz高分辨率语音,支持11种语言,并通过音频标记实现精细的情感控制和非语言发声。我们还以MIT许可证开源了训练和建模代码。

技术细节

  • 模型架构:基于Transformer的自回归模型
  • 参数量:TTS-1-Max(8.8B)/TTS-1(1.6B)
  • 采样率:48kHz高分辨率音频
  • 支持语言:11种
  • 特色功能:音频标记控制、情感表达、非语言发声
  • 训练流程:预训练→微调→RL对齐三阶段
  • 开源协议:MIT许可证

性能表现

模型在多项基准测试中达到state-of-the-art水平,完全基于上下文学习实现高质量的语音合成。特别在以下方面表现突出:

  1. 语音自然度和表现力
  2. 多语言支持能力
  3. 低延迟实时生成
  4. 边缘设备部署效率

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • TTS-1技术报告
    • 技术细节
    • 性能表现
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档