点击打开题目
A. Co-prime Array
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
You are given an array of n elements, you must make it a co-prime array in as few moves as possible.
In each move you can insert any positive integral number you want not greater than 109 in any place in the array.
An array is co-prime if any two adjacent numbers of it are co-prime.
In the number theory, two integers a and b are said to be co-prime if the only positive integer that divides both of them is 1.
Input
The first line contains integer n (1 ≤ n ≤ 1000) — the number of elements in the given array.
The second line contains n integers ai (1 ≤ ai ≤ 109) — the elements of the array a.
Output
Print integer k on the first line — the least number of elements needed to add to the array a to make it co-prime.
The second line should contain n + k integers aj — the elements of the array a after adding k elements to it. Note that the new array should be co-prime, so any two adjacent values should be co-prime. Also the new array should be got from the original array a by addingk elements to it.
If there are multiple answers you can print any one of them.
Example
input
3
2 7 28
output
1
2 7 9 28
1与任何数互质,那么碰见两两不互质的中间添加1就行了。
代码如下:
#include <stdio.h>
#include <cstring>
#include <cmath>
#include <queue>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(a,b) memset(a,b,sizeof(a))
int GCD(int a,int b)
{
if (a % b == 0)
return b;
return GCD(b,a%b);
}
int main()
{
int n;
int num[1011];
scanf ("%d",&n);
scanf ("%d",&num[1]);
if (n == 1)
{
printf ("0\n%d\n",num[1]);
return 0;
}
int ant = 0;
for (int i = 2 ; i <= n ; i++)
{
scanf ("%d",&num[i]);
if (GCD(num[i] , num[i-1]) != 1)
ant++;
}
printf ("%d\n",ant);
printf ("%d",num[1]);
for (int i = 2 ; i <= n ; i++)
{
if (GCD(num[i] , num[i-1]) != 1)
printf (" 1 %d",num[i]);
else
printf (" %d",num[i]);
}
puts("");
return 0;
}