在开发电商平台推荐系统时,我们需要实现基于用户的协同过滤算法。最初版本使用Python处理计算逻辑,但随着用户量和商品数量增长,性能瓶颈日益明显。我决定将核心计算逻辑迁移到SQL层面执行,利用数据库的并行处理能力提升性能。
在这个过程中,我使用ChatGPT作为辅助工具,帮助我优化SQL查询语句、分析执行计划,并提供了多种实现思路的比较分析。
最初的协同过滤SQL实现较为朴素:
-- 原始实现:计算用户相似度
SELECT
u1.user_id as user1,
u2.user_id as user2,
COUNT(*) as common_products,
SUM(u1.rating * u2.rating) as dot_product,
SQRT(SUM(u1.rating * u1.rating)) * SQRT(SUM(u2.rating * u2.rating)) as magnitude
FROM user_ratings u1
INNER JOIN user_ratings u2 ON u1.product_id = u2.product_id
WHERE u1.user_id != u2.user_id
GROUP BY u1.user_id, u2.user_id
HAVING common_products > 5;
这个查询存在明显的性能问题:笛卡尔积过大、重复计算多、缺乏有效的过滤条件。
我向ChatGPT描述了场景和问题:"我需要优化一个协同过滤算法的SQL实现,目前计算用户相似度的查询在10万级用户数据上运行极慢,请分析可能优化方向。"
ChatGPT给出了多个建议:
基于ChatGPT的建议,我实现了以下优化方案:
-- 创建预过滤的评分视图
CREATE MATERIALIZED VIEW user_ratings_filtered AS
SELECT user_id, product_id, rating
FROM user_ratings
WHERE rating >= 3; -- 只考虑3分及以上评分
-- 添加索引
CREATE INDEX idx_user_ratings_user ON user_ratings_filtered(user_id);
CREATE INDEX idx_user_ratings_product ON user_ratings_filtered(product_id);
-- 优化后的相似度计算
WITH user_norms AS (
SELECT
user_id,
SQRT(SUM(rating * rating)) as norm
FROM user_ratings_filtered
GROUP BY user_id
),
common_ratings AS (
SELECT
u1.user_id as user1,
u2.user_id as user2,
u1.product_id,
u1.rating as rating1,
u2.rating as rating2
FROM user_ratings_filtered u1
INNER JOIN user_ratings_filtered u2
ON u1.product_id = u2.product_id
AND u1.user_id < u2.user_id -- 避免重复计算
WHERE u1.user_id != u2.user_id
)
SELECT
user1,
user2,
COUNT(*) as common_products,
SUM(rating1 * rating2) / (n1.norm * n2.norm) as cosine_similarity
FROM common_ratings cr
JOIN user_norms n1 ON cr.user1 = n1.user_id
JOIN user_norms n2 ON cr.user2 = n2.user_id
GROUP BY user1, user2, n1.norm, n2.norm
HAVING COUNT(*) > 5
ORDER BY cosine_similarity DESC;
ChatGPT帮助分析了查询执行计划,指出仍然存在全表扫描的问题。基于此,我进一步优化:
-- 采用分区表优化
CREATE TABLE user_ratings_partitioned (
user_id INT,
product_id INT,
rating DECIMAL(3,2),
PARTITION BY HASH(user_id) PARTITIONS 16
);
-- 使用窗口函数优化范数计算
WITH user_products AS (
SELECT
user_id,
product_id,
rating,
COUNT(*) OVER (PARTITION BY user_id) as user_product_count
FROM user_ratings_filtered
WHERE user_product_count > 5 -- 只考虑有足够评分行为的用户
),
similarity_calculations AS (
SELECT
u1.user_id as user1,
u2.user_id as user2,
u1.product_id,
u1.rating * u2.rating as product_similarity
FROM user_products u1
INNER JOIN user_products u2
ON u1.product_id = u2.product_id
AND u1.user_id < u2.user_id
)
SELECT
user1,
user2,
COUNT(*) as common_products,
SUM(product_similarity) / (
(SELECT SQRT(SUM(rating * rating)) FROM user_ratings WHERE user_id = user1) *
(SELECT SQRT(SUM(rating * rating)) FROM user_ratings WHERE user_id = user2)
) as cosine_similarity
FROM similarity_calculations
GROUP BY user1, user2
HAVING common_products > 5;
经过多轮优化,性能得到显著提升:
基于此次实践,我计划进一步探索:
通过ChatGPT辅助优化SQL实现的协同过滤算法,不仅提升了系统性能,更深化了对数据库计算和算法优化的理解。AI工具在此过程中发挥了思路拓展和具体实现的双重作用,但最终决策仍需基于对业务场景和系统特性的深入理解。这种与AI工具协同工作的模式,为我们解决复杂技术问题提供了新的思路和方法论。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。