以下是一份Grafana项目实战教程,涵盖服务器监控和电商实时看板的实现,专为专业人员设计:
方案1:Prometheus + Node Exporter
# 安装Node Exporter(被监控服务器)
wget https://github.com/prometheus/node_exporter/releases/download/v1.6.1/node_exporter-1.6.1.linux-amd64.tar.gz
tar xvfz node_exporter-* && cd node_exporter-*
./node_exporter &
# Prometheus配置示例(prometheus.yml)
scrape_configs:
- job_name: 'node'
static_configs:
- targets: ['your_server_ip:9100']
方案2:Telegraf(更适合混合云环境)
# /etc/telegraf/telegraf.conf
[[inputs.cpu]]
percpu = true
totalcpu = true
[[inputs.mem]]
[[inputs.disk]]
添加数据源:HTTP URL指向Prometheus服务地址
导入模板:使用官方ID 1860
(Node Exporter Full)
自定义优化:
添加磁盘IOPS监控:
rate(node_disk_reads_completed_total[5m])
内存使用率公式:
(1 - (node_memory_MemAvailable_bytes / node_memory_MemTotal_bytes)) * 100
多服务器筛选:创建instance
变量
label_values(node_network_up, instance)
智能告警:当CPU > 80%持续5分钟触发
avg(rate(node_cpu_seconds_total{mode="idle"}[1m])) by (instance) < 20
[业务DB] --> [Flink/Kafka] --> [实时数仓] --> [Grafana] (实时ETL) (ClickHouse)
GMV实时统计(MySQL示例):
SELECT
SUM(order_amount) AS gmv,
COUNT(DISTINCT user_id) AS uv
FROM orders
WHERE status = 'paid'
AND order_time >= NOW() - INTERVAL 1 HOUR
用户分布查询(PostGIS地理数据):
SELECT
city,
COUNT(*) AS users
FROM user_locations
GROUP BY city
连接业务数据库:
mysql
/postgres
数据源
实时数据接入:
# Telegraf配置Kafka消费
[[inputs.kafka_consumer]]
brokers = ["kafka:9092"]
topics = ["order_events"]
data_format = "json"
可视化设计:
GMV趋势:Time series + 7日同比计算
SELECT
time_bucket('1h', order_time) AS time,
SUM(order_amount)
FROM orders
GROUP BY 1
用户分布:Geomap面板(需安装插件)
实时订单流:Live tailing功能
混合数据源关联:
SELECT
a.server_ip,
b.service_name
FROM prometheus.metrics a
JOIN mysql.servers b ON a.instance = b.ip
自动化报表:
# 使用Grafana API生成PDF
curl -H "Authorization: Bearer API_KEY"
"http://grafana:3000/api/reports/email"
-d '{...}'
权限控制:
[auth.ldap]
enabled = true
config_file = /etc/grafana/ldap.toml
/var/log/grafana
推荐插件:
通过以上方案,可构建日均处理百万级数据点的高性能监控系统,建议生产环境配合K8s实现动态扩缩容。
本篇的分享就到这里了,感谢观看,如果对你有帮助,别忘了点赞+收藏+关注。