基于MATLAB的IEEE 9节点系统潮流计算的完整实现,包括
这个实现可以作为电力系统分析的基础,进一步扩展可以包括
故障分析(短路计算)
最优潮流计算
静态安全分析
电压稳定性分析
IEEE 9节点系统是电力系统分析中的经典测试案例,常用于验证潮流计算算法的正确性。
IEEE 9节点系统包含:
首先,我们需要定义IEEE 9节点系统的参数。创建数据文件ieee9_data.m:
function [busdata, linedata] = ieee9_data()
% IEEE 9节点系统数据
% 母线数据格式: [节点编号 类型 电压幅值(pu) 电压相角(deg) P负荷(MW) Q负荷(Mvar)]
% 类型: 1=PQ, 2=PV, 3=平衡节点
busdata = [
1 3 1.00 0.00 0.0 0.0;
2 2 1.00 0.00 0.0 0.0;
3 2 1.00 0.00 0.0 0.0;
4 1 1.00 0.00 0.0 0.0;
5 1 1.00 0.00 125.0 50.0;
6 1 1.00 0.00 90.0 30.0;
7 1 1.00 0.00 0.0 0.0;
8 1 1.00 0.00 100.0 35.0;
9 1 1.00 0.00 0.0 0.0;
];
% 线路数据格式: [起始节点 结束节点 电阻(pu) 电抗(pu) 电纳(pu) 变比 相位偏移]
% 基准功率: 100 MVA
linedata = [
1 4 0.0000 0.0576 0.0000 1.000 0.0;
4 5 0.0170 0.0920 0.1580 1.000 0.0;
5 6 0.0390 0.1700 0.3580 1.000 0.0;
3 6 0.0000 0.0586 0.0000 1.000 0.0;
6 7 0.0119 0.1008 0.2090 1.000 0.0;
7 8 0.0085 0.0720 0.1490 1.000 0.0;
8 2 0.0000 0.0625 0.0000 1.000 0.0;
8 9 0.0320 0.1610 0.3060 1.000 0.0;
9 4 0.0100 0.0850 0.1760 1.000 0.0;
];
% 发电机数据: [节点编号 P发电(MW) V设定值(pu) Qmin(Mvar) Qmax(Mvar)]
gendata = [
1 0.0 1.040 -999.9 999.9;
2 163.0 1.025 -999.9 999.9;
3 85.0 1.025 -999.9 999.9;
];
end使用牛顿-拉夫逊法实现潮流计算:
function [V, delta, P, Q, iterations] = newton_raphson_power_flow()
% 牛顿-拉夫逊法潮流计算
% 读取系统数据
[busdata, linedata] = ieee9_data();
% 系统参数
nbus = size(busdata, 1); % 节点数量
Sbase = 100; % 基准功率(MVA)
tol = 1e-6; % 收敛容差
max_iter = 20; % 最大迭代次数
% 提取母线数据
busno = busdata(:, 1); % 节点编号
type = busdata(:, 2); % 节点类型
V = busdata(:, 3); % 电压幅值初始值
delta = busdata(:, 4); % 电压相角初始值
Pd = busdata(:, 5) / Sbase; % 有功负荷(pu)
Qd = busdata(:, 6) / Sbase; % 无功负荷(pu)
% 提取发电机数据
Pg = zeros(nbus, 1);
Qg = zeros(nbus, 1);
Vset = zeros(nbus, 1);
% 设置发电机数据
Pg(1) = 0 / Sbase; % 平衡节点
Pg(2) = 163 / Sbase; % PV节点
Pg(3) = 85 / Sbase; % PV节点
Vset(1) = 1.040;
Vset(2) = 1.025;
Vset(3) = 1.025;
% 计算净注入功率
Psch = Pg - Pd; % 净有功功率注入
Qsch = Qg - Qd; % 净无功功率注入
% 构建导纳矩阵
Y = ybus(linedata, nbus);
G = real(Y);
B = imag(Y);
% 初始化
converged = 0;
iterations = 0;
% 确定PQ节点和PV节点
pqnodes = find(type == 1);
pvnodes = find(type == 2);
slacknode = find(type == 3);
npq = length(pqnodes);
npv = length(pvnodes);
% 主迭代循环
while (~converged && iterations < max_iter)
% 计算功率失配
[Pcalc, Qcalc] = calculate_power(V, delta, G, B, nbus);
% 计算失配量
dP = Psch - Pcalc;
dQ = Qsch - Qcalc;
% 构建雅可比矩阵
[J11, J12, J21, J22] = build_jacobian(V, delta, G, B, pqnodes, pvnodes, nbus);
% 形成完整的雅可比矩阵
J = [J11 J12; J21 J22];
% 形成失配向量
dPQ = [dP(pvnodes); dP(pqnodes); dQ(pqnodes)];
% 求解修正方程
dX = J \ dPQ;
% 更新电压幅值和相角
n = 1;
% 更新PV节点的电压相角
for i = 1:length(pvnodes)
k = pvnodes(i);
delta(k) = delta(k) + dX(n);
n = n + 1;
end
% 更新PQ节点的电压相角
for i = 1:length(pqnodes)
k = pqnodes(i);
delta(k) = delta(k) + dX(n);
n = n + 1;
end
% 更新PQ节点的电压幅值
for i = 1:length(pqnodes)
k = pqnodes(i);
V(k) = V(k) + dX(n) * V(k); % dV是相对值
n = n + 1;
end
% 检查收敛性
norm_dP = norm(dP([pvnodes; pqnodes]), inf);
norm_dQ = norm(dQ(pqnodes), inf);
if norm_dP < tol && norm_dQ < tol
converged = 1;
end
iterations = iterations + 1;
% 显示迭代信息
fprintf('迭代 %d: dP = %.6f, dQ = %.6f\n', iterations, norm_dP, norm_dQ);
end
if converged
fprintf('潮流计算在 %d 次迭代后收敛\n', iterations);
else
fprintf('潮流计算未收敛,达到最大迭代次数 %d\n', max_iter);
end
% 计算最终功率
[P, Q] = calculate_power(V, delta, G, B, nbus);
end
function Y = ybus(linedata, nbus)
% 构建导纳矩阵
Y = zeros(nbus, nbus);
for k = 1:size(linedata, 1)
from = linedata(k, 1);
to = linedata(k, 2);
R = linedata(k, 3);
X = linedata(k, 4);
B = linedata(k, 5);
a = linedata(k, 6);
phi = linedata(k, 7);
% 计算串联阻抗和导纳
z = R + 1j*X;
y = 1/z;
% 添加线路导纳
Y(from, to) = Y(from, to) - y/a;
Y(to, from) = Y(to, from) - y/a;
% 添加对地电容
Y(from, from) = Y(from, from) + y/(a^2) + 1j*B/2;
Y(to, to) = Y(to, to) + y + 1j*B/2;
end
end
function [Pcalc, Qcalc] = calculate_power(V, delta, G, B, nbus)
% 计算节点注入功率
Pcalc = zeros(nbus, 1);
Qcalc = zeros(nbus, 1);
for i = 1:nbus
for j = 1:nbus
theta = delta(i) - delta(j);
Pcalc(i) = Pcalc(i) + V(i)*V(j)*(G(i,j)*cos(theta) + B(i,j)*sin(theta));
Qcalc(i) = Qcalc(i) + V(i)*V(j)*(G(i,j)*sin(theta) - B(i,j)*cos(theta));
end
end
end
function [J11, J12, J21, J22] = build_jacobian(V, delta, G, B, pqnodes, pvnodes, nbus)
% 构建雅可比矩阵的子矩阵
% 初始化雅可比子矩阵
J11 = zeros(length(pvnodes) + length(pqnodes), length(pvnodes) + length(pqnodes));
J12 = zeros(length(pvnodes) + length(pqnodes), length(pqnodes));
J21 = zeros(length(pqnodes), length(pvnodes) + length(pqnodes));
J22 = zeros(length(pqnodes), length(pqnodes));
% 填充J11 (dP/dδ)
m = 1;
for i = [pvnodes; pqnodes']
n = 1;
for j = [pvnodes; pqnodes']
if i == j
J11(m, n) = -Q(i) - B(i, i)*V(i)^2;
else
theta = delta(i) - delta(j);
J11(m, n) = V(i)*V(j)*(G(i,j)*sin(theta) - B(i,j)*cos(theta));
end
n = n + 1;
end
m = m + 1;
end
% 填充J12 (dP/dV)
m = 1;
for i = [pvnodes; pqnodes']
n = 1;
for j = pqnodes'
if i == j
J12(m, n) = P(i)/V(i) + G(i,i)*V(i);
else
theta = delta(i) - delta(j);
J12(m, n) = V(i)*(G(i,j)*cos(theta) + B(i,j)*sin(theta));
end
n = n + 1;
end
m = m + 1;
end
% 填充J21 (dQ/dδ)
m = 1;
for i = pqnodes'
n = 1;
for j = [pvnodes; pqnodes']
if i == j
J21(m, n) = P(i) - G(i,i)*V(i)^2;
else
theta = delta(i) - delta(j);
J21(m, n) = -V(i)*V(j)*(G(i,j)*cos(theta) + B(i,j)*sin(theta));
end
n = n + 1;
end
m = m + 1;
end
% 填充J22 (dQ/dV)
m = 1;
for i = pqnodes'
n = 1;
for j = pqnodes'
if i == j
J22(m, n) = Q(i)/V(i) - B(i,i)*V(i);
else
theta = delta(i) - delta(j);
J22(m, n) = V(i)*(G(i,j)*sin(theta) - B(i,j)*cos(theta));
end
n = n + 1;
end
m = m + 1;
end
end创建结果分析和可视化函数:
function analyze_and_visualize(V, delta, P, Q)
% 潮流计算结果分析与可视化
% 读取系统数据
[busdata, linedata] = ieee9_data();
Sbase = 100; % 基准功率(MVA)
% 提取母线数据
busno = busdata(:, 1);
type = busdata(:, 2);
Pd = busdata(:, 5);
Qd = busdata(:, 6);
% 计算实际功率
P_actual = P * Sbase;
Q_actual = Q * Sbase;
% 计算线路潮流
[line_flows, losses] = calculate_line_flows(V, delta, linedata, Sbase);
% 显示节点结果
fprintf('\n=========== IEEE 9节点系统潮流计算结果 ===========\n\n');
fprintf('节点 类型 电压(pu) 相角(deg) 有功(MW) 无功(Mvar)\n');
fprintf('----------------------------------------------------\n');
for i = 1:length(busno)
bus_type = 'PQ';
if type(i) == 2
bus_type = 'PV';
elseif type(i) == 3
bus_type = 'SL';
end
fprintf('%2d %2s %6.4f %7.3f %7.2f %7.2f\n', ...
busno(i), bus_type, V(i), rad2deg(delta(i)), P_actual(i), Q_actual(i));
end
% 显示线路潮流和损耗
fprintf('\n=========== 线路潮流和损耗 ===========\n\n');
fprintf('线路 从节点 到节点 有功(MW) 无功(Mvar) 损耗(MW) 损耗(Mvar)\n');
fprintf('---------------------------------------------------------------\n');
for i = 1:size(linedata, 1)
from = linedata(i, 1);
to = linedata(i, 2);
fprintf('%2d %2d %2d %7.2f %7.2f %7.2f %7.2f\n', ...
i, from, to, ...
real(line_flows(i, 1)), imag(line_flows(i, 1)), ...
real(losses(i)), imag(losses(i)));
end
% 计算总损耗
total_loss = sum(losses);
fprintf('\n总损耗: %.2f MW + j%.2f Mvar\n', real(total_loss), imag(total_loss));
% 可视化电压分布
figure;
subplot(2, 1, 1);
bar(busno, V);
title('节点电压幅值');
xlabel('节点编号');
ylabel('电压(pu)');
grid on;
subplot(2, 1, 2);
bar(busno, rad2deg(delta));
title('节点电压相角');
xlabel('节点编号');
ylabel('相角(度)');
grid on;
% 可视化功率分布
figure;
subplot(2, 1, 1);
bar(busno, P_actual);
title('节点有功功率');
xlabel('节点编号');
ylabel('有功功率(MW)');
grid on;
subplot(2, 1, 2);
bar(busno, Q_actual);
title('节点无功功率');
xlabel('节点编号');
ylabel('无功功率(Mvar)');
grid on;
end
function [line_flows, losses] = calculate_line_flows(V, delta, linedata, Sbase)
% 计算线路潮流和损耗
nlines = size(linedata, 1);
line_flows = zeros(nlines, 2); % 第一列是从节点流向到节点,第二列是反向
losses = zeros(nlines, 1);
for k = 1:nlines
from = linedata(k, 1);
to = linedata(k, 2);
R = linedata(k, 3);
X = linedata(k, 4);
B = linedata(k, 5);
a = linedata(k, 6);
% 计算串联阻抗和导纳
z = R + 1j*X;
y = 1/z;
% 计算从节点流向到节点的电流
V_from = V(from) * exp(1j*delta(from));
V_to = V(to) * exp(1j*delta(to));
I_from_to = y * (V_from/a - V_to) + 1j*B/2 * V_from/a;
I_to_from = y * (V_to - V_from/a) + 1j*B/2 * V_to;
% 计算线路潮流
S_from_to = V_from .* conj(I_from_to) * Sbase;
S_to_from = V_to .* conj(I_to_from) * Sbase;
line_flows(k, 1) = S_from_to;
line_flows(k, 2) = S_to_from;
% 计算线路损耗
losses(k) = S_from_to + S_to_from;
end
end创建主程序来运行潮流计算并显示结果:
% IEEE 9节点系统潮流计算主程序
clear all;
close all;
clc;
fprintf('IEEE 9节点系统潮流计算\n');
fprintf('======================\n\n');
% 运行牛顿-拉夫逊法潮流计算
[V, delta, P, Q, iterations] = newton_raphson_power_flow();
% 分析和可视化结果
analyze_and_visualize(V, delta, P, Q);
% 保存结果到文件
save_results(V, delta, P, Q);
fprintf('\n潮流计算完成!\n');参考代码 基于matlab的典型IEEE 9节点系统潮流计算 www.youwenfan.com/contentted/101529.html
添加灵敏度分析功能,研究系统参数变化对潮流的影响:
function sensitivity_analysis()
% 灵敏度分析:研究负荷变化对系统潮流的影响
% 读取原始数据
[busdata, linedata] = ieee9_data();
Sbase = 100;
% 定义负荷变化范围
load_multipliers = 0.5:0.1:1.5;
n_cases = length(load_multipliers);
% 初始化结果存储
voltages = zeros(n_cases, 9);
angles = zeros(n_cases, 9);
losses = zeros(n_cases, 1);
% 对每个负荷水平进行潮流计算
for i = 1:n_cases
multiplier = load_multipliers(i);
% 修改负荷数据
modified_busdata = busdata;
modified_busdata(:, 5:6) = busdata(:, 5:6) * multiplier;
% 运行潮流计算
[V, delta, P, Q, ~] = newton_raphson_power_flow_modified(modified_busdata, linedata);
% 存储结果
voltages(i, :) = V';
angles(i, :) = rad2deg(delta)';
% 计算总损耗
[~, line_losses] = calculate_line_flows(V, delta, linedata, Sbase);
losses(i) = sum(real(line_losses));
end
% 绘制灵敏度分析结果
figure;
subplot(2, 1, 1);
plot(load_multipliers, voltages);
title('负荷变化对节点电压的影响');
xlabel('负荷倍数');
ylabel('电压(pu)');
legend('节点1', '节点2', '节点3', '节点4', '节点5', '节点6', '节点7', '节点8', '节点9');
grid on;
subplot(2, 1, 2);
plot(load_multipliers, losses, 'r-o', 'LineWidth', 2);
title('负荷变化对系统损耗的影响');
xlabel('负荷倍数');
ylabel('总损耗(MW)');
grid on;
% 显示临界负荷水平
[min_voltage, critical_node] = min(min(voltages));
critical_multiplier = load_multipliers(find(voltages(:, critical_node) < 0.95, 1));
if ~isempty(critical_multiplier)
fprintf('系统在负荷倍数为 %.2f 时,节点 %d 电压低于 0.95 pu\n', ...
critical_multiplier, critical_node);
else
fprintf('在所研究的负荷范围内,所有节点电压均高于 0.95 pu\n');
end
end
function [V, delta, P, Q, iterations] = newton_raphson_power_flow_modified(busdata, linedata)
% 修改版的牛顿-拉夫逊法,接受外部数据
% 系统参数
nbus = size(busdata, 1);
Sbase = 100;
tol = 1e-6;
max_iter = 20;
% 提取母线数据
busno = busdata(:, 1);
type = busdata(:, 2);
V = busdata(:, 3);
delta = deg2rad(busdata(:, 4));
Pd = busdata(:, 5) / Sbase;
Qd = busdata(:, 6) / Sbase;
% 发电机数据
Pg = zeros(nbus, 1);
Qg = zeros(nbus, 1);
% 设置发电机数据
Pg(1) = 0 / Sbase;
Pg(2) = 163 / Sbase;
Pg(3) = 85 / Sbase;
% 计算净注入功率
Psch = Pg - Pd;
Qsch = Qg - Qd;
% 构建导纳矩阵
Y = ybus(linedata, nbus);
G = real(Y);
B = imag(Y);
% 其余部分与原始牛顿-拉夫逊法相同
% ...
% (这里省略重复代码,实际实现应包含完整算法)
end原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。