首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >解决特斯拉「监督稀疏」难题,DriveVLA-W0用世界模型放大自动驾驶Data Scaling Law

解决特斯拉「监督稀疏」难题,DriveVLA-W0用世界模型放大自动驾驶Data Scaling Law

作者头像
机器之心
发布2025-11-26 15:45:22
发布2025-11-26 15:45:22
600
举报
文章被收录于专栏:机器之心机器之心

在自动驾驶领域,VLA 大模型正从学术前沿走向产业落地的 “深水区”。近日,特斯拉(Tesla)在 ICCV 的分享中,就将其面临的核心挑战之一公之于众 ——“监督稀疏”

这一问题直指当前 VLA 模型的 “七寸”:其输入是高维、稠密的视觉信息流,但其监督信号却往往是低维、稀疏的驾驶动作(如路径点)。那么即便使用 PB 级的海量数据,VLA 模型的巨大潜力也无法被有效释放。

正当业界热议这一瓶颈时,一支来自国内顶尖学术机构与华为合作的团队,已经悄然给出了破解这一难题的 “锦囊”。一篇名为 《DriveVLA-W0: World Models Amplify Data Scaling Law in Autonomous Driving》 的新工作,为解决这一 “监督稀疏” 提供了极具洞见的解决方案。该研究提出,世界模型(World Model)是解锁 VLA 数据规模定律(Data Scaling Law)的关键钥匙

  • 论文标题:DriveVLA-W0: World Models Amplify Data Scaling Law in Autonomous Driving
  • 论文链接:https://arxiv.org/abs/2510.12796

VLA 的 “监督赤字”:Data Scaling Law 为何在自动驾驶失效?

自动驾驶领域的研究者普遍希望复现 Data Scaling Law 在 LLM 上的成功:通过扩大模型参数和数据规模,实现自动驾驶性能的飞跃。

但 DriveVLA-W0 指出,VLA 模型面临着与 LLM 截然不同的困境:“监督赤字”(Supervision Deficit)。

一个数十亿参数的 VLA 模型,其输入是高维、稠密的视觉信息流,但其监督信号却往往是低维、稀疏的驾驶动作(如路径点)。模型的大部分表征能力被浪费,导致其无法充分学习驾驶环境的复杂动态。

研究团队的实验证实了这一点:在稀疏的动作监督下,VLA 模型的性能会随着数据量的增加迅速饱和,Data Scaling Law 的效应在此大打折扣

破解之道:用世界模型提供 “稠密” 的自监督信号

如何填补这一 “赤字”?DriveVLA-W0 的答案是:与其依赖稀疏的 “动作”,不如让模型学习稠密的 “世界”。

研究团队创造性地引入了世界模型,将 “预测未来图像” 作为一项稠密的自监督训练任务。

传统 VLA(左)仅依赖稀疏的动作监督。DriveVLA-W0(右)则额外引入了稠密的视觉预测任务,迫使模型理解环境。

当模型被要求去预测下一帧的完整视觉画面时,它必须去学习和理解这个世界的真实运行规律 —— 例如,其他车辆的运动趋势、行人与车辆的交互关系等。

这一设计为 VLA 模型提供了远比 “动作” 更丰富和稠密的学习信号,从根本上缓解了 “监督赤字” 问题。

核心贡献:世界模型 “放大” 了 Data Scaling Law

如果说解决 “监督赤字” 是这项工作的起点,那么其更核心的贡献在于发现了:世界模型能够显著 “放大”(Amplifies)数据规模定律。

在 700K 到 70M 的数据规模上,DriveVLA-W0(红线)的性能提升斜率显著优于基线(蓝线),展现了更强的扩展潜力。

研究团队在高达 7000 万帧的内部大规模数据集上进行了严格的 Scaling 实验。结果清晰地显示:

基线模型(仅动作监督): 随着数据量增大,性能提升迅速放缓

DriveVLA-W0(世界模型): 性能随着数据量增加,实现了持续且显著的提升,与基线模型的性能差距越拉越大

在 70M 帧的规模下,世界模型的加入,使模型的碰撞率降低了 20.4%。这证明了世界模型带来的 “质变”,是单纯堆砌动作数据所无法企及的。

兼顾性能与效率:轻量级 MoE 专家

DriveVLA-W0 并非一个不考虑落地的 “学术模型”。针对 VLA 大模型在自动驾驶中面临的 “高延迟” 痛点,团队还提出了一种轻量级的 MoE “动作专家”(Action Expert)架构

该设计在不牺牲性能的前提下,显著降低了模型的推理延迟,仅为基线 VLA 的 63.1% ,为 VLA 模型的实时部署提供了可能。

结语

这项研究工作不仅为特斯拉等行业先行者提出的 “真问题” 提供了清晰的解题思路,也为自动驾驶乃至整个具身智能领域,展示了世界模型在 “生成” 之外的另一条核心价值路径 —— 作为强大的自监督引擎,撬动 VLA 模型的 Data Scaling Law。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2025-11-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档